解:依題意得,一元二次方程$mx^2 - (3m - 1)x + 2m - 1 = 0$的根的判別式$\Delta = 1。$
對(duì)于一元二次方程$ax^2 + bx + c = 0$($a \neq 0$),判別式$\Delta = b^2 - 4ac,$在原方程中,$a = m,$$b = -(3m - 1),$$c = 2m - 1,$所以:
$\begin{aligned}\Delta&=[-(3m - 1)]^2 - 4m(2m - 1)\\&=(3m - 1)^2 - 4m(2m - 1)\\&=9m^2 - 6m + 1 - 8m^2 + 4m\\&=m^2 - 2m + 1\end{aligned}$
因?yàn)?\Delta = 1,$所以$m^2 - 2m + 1 = 1,$即$(m - 1)^2 = 1,$解得$m - 1 = \pm 1,$所以$m_1 = 2,$$m_2 = 0。$
又因?yàn)樵匠淌且辉畏匠?,所?m \neq 0,$故$m = 2。$
將$m = 2$代入原方程,得$2x^2 - 5x + 3 = 0。$
對(duì)于方程$2x^2 - 5x + 3 = 0,$使用求根公式$x = \frac{-b \pm \sqrt{\Delta}}{2a},$其中$a = 2,$$b = -5,$$\Delta = 1,$則:
$x = \frac{5 \pm \sqrt{1}}{4} = \frac{5 \pm 1}{4}$
解得$x_1 = \frac{5 + 1}{4} = \frac{3}{2},$$x_2 = \frac{5 - 1}{4} = 1。$
綜上,$m$的值為$2,$該方程的根為$x_1 = \frac{3}{2},$$x_2 = 1。$