證明:過點$F$作$FM \perp AB,$垂足為$M,$作$FN \perp BC,$垂足為$N,$連接$BF。$
∵$F$是$\angle BAC$與$\angle BCA$的平分線交點,
∴$BF$是$\angle ABC$的平分線(三角形三條角平分線交于一點),
∴$MF = FN$(角平分線上的點到角兩邊的距離相等)。
∵$\angle ABC = 60^\circ,$四邊形$BMFN$中,$\angle BMF = \angle BNF = 90^\circ,$
∴$\angle MFN = 360^\circ - 90^\circ - 90^\circ - 60^\circ = 120^\circ。$
在$\triangle ABC$中,$\angle BAC + \angle BCA = 180^\circ - \angle B = 120^\circ,$
∵$AD,$$CE$分別平分$\angle BAC,$$\angle BCA,$
∴$\angle FAC = \frac{1}{2}\angle BAC,$$\angle FCA = \frac{1}{2}\angle BCA,$
∴$\angle FAC + \angle FCA = \frac{1}{2}(\angle BAC + \angle BCA) = 60^\circ,$
∴$\angle CFA = 180^\circ - (\angle FAC + \angle FCA) = 120^\circ,$
∴$\angle DFE = \angle CFA = 120^\circ$(對頂角相等),
即$\angle MFN = \angle DFE = 120^\circ。$
∵$\angle MFN = \angle MFD + \angle DFN,$$\angle DFE = \angle DFN + \angle NFE,$
∴$\angle MFD = \angle NFE。$
在$\triangle DMF$和$\triangle ENF$中,
$\begin{cases} \angle DMF = \angle ENF = 90^\circ \\MF = NF \\\angle MFD = \angle NFE \end{cases},$
∴$\triangle DMF \cong \triangle ENF$(ASA),
∴$FE = FD。$