解:?$(1)$?∵直線?$PQ// y$?軸,∴點?$P $?與點?$Q $?的橫坐標相同
已知點?$Q $?的坐標為?$(4,$??$5),$?則?$2a - 2 = 4,$?解得?$a = 3$?
∴點?$P $?的縱坐標為?$a + 5 = 3 + 5 = 8,$?故點?$P $?的坐標為?$(4,$??$8)$?
?$(2)$?∵點?$P $?到兩坐標軸的距離相等,∴?$|2a - 2| = |a + 5|$?
當?$2a - 2 = a + 5$?時,解得?$a = 7$?
此時點?$P $?的坐標為?$(2×7 - 2,$??$7 + 5) = (12,$??$12);$?
當?$2a - 2 = -(a + 5)$?時,即?$2a - 2 = -a - 5,$?解得?$a = -1$?
此時點?$P $?的坐標為?$(2×(-1) - 2,$??$-1 + 5) = (-4,$??$4)$?
綜上,點?$P $?的坐標為?$(12,$??$12)$?或?$(-4,$??$4)$?