解:?$(1)$?圖象如圖所示
?$ (2)$?圖象法:
?$ $?當?$y = 2$?時,在?$y=\frac 54x$?圖象上對應的?$x$?值大于?$y = 2x$?圖象上對應的?$x$?值,
?$y = 2x$?圖象上對應的?$x$?值大于?$y = 5x$?圖象上對應的?$x$?值
計算法:當?$y = 2$?時,
?$ $?對于?$y=\frac 54x,$?解得?$x=\frac 85;$?
?$ $?對于?$y = 2x,$??$2 = 2x,$?解得?$x = 1;$?
?$ $?對于?$y = 5x,$??$2 = 5x,$?解得?$x=\frac 25。$?
?$ $?所以?$\frac 85>1>\frac 25,$?即?$x_{y=\frac 54x}>x_{y=2x}>x_{y=5x}$?
?$ (3)$?小明的說法正確
理由:在正比例函數(shù)?$y = kx(k>0)$?中,?$\vert k\vert $?越大,
函數(shù)值?$y$?隨?$x$?的增大而增大得越快,
∵?$\vert 5\vert >\vert 2\vert >\vert \frac 54\vert$?
∴隨著自變量?$x$?的增大,函數(shù)?$y = 5x$?的函數(shù)值增加得最快