解:?$(1)$?∵?$\sqrt 9<\sqrt {11}<\sqrt {16},$?即?$3 < \sqrt {11}< 4$?
∴?$\sqrt {11}$?的整數(shù)部分是?$3,$?小數(shù)部分是?$\sqrt {11}-3$?
?$ (2)$?∵?$3 < \sqrt {11}< 4,$?∴?$-4<-\sqrt {11}<-3$?
則?$11 - 4<11-\sqrt {11}<11 - 3,$?即?$7<11-\sqrt {11}<8$?
∴?$11-\sqrt {11}$?的整數(shù)部分是?$7,$?小數(shù)部分?$m = 11-\sqrt {11}-7 = 4-\sqrt {11}$?
又∵?$3 < \sqrt {11}< 4$?
∴?$11 + 3<11+\sqrt {11}<11 + 4,$?即?$14<11+\sqrt {11}<15$?
∴?$11+\sqrt {11}$?的整數(shù)部分是?$14,$?小數(shù)部分?$n = 11+\sqrt {11}-14=\sqrt {11}-3$?
∴?$m + n=(4-\sqrt {11})+(\sqrt {11}-3)=4-\sqrt {11}+\sqrt {11}-3 = 1$?
∵?$1$?是有理數(shù),∴?$m + n$?是有理數(shù)