?$ (1)$?證明:∵?$\triangle ABC$?是等邊三角形
∴?$∠ABC=∠ACB = 60°,$??$AB = AC$?
∴?$∠DBP = 180°-∠ABC=120°,$?
?$∠P CE = 180°-∠ACB = 120°$?
∴?$∠DBP=∠P CE$?
∵?$P A = P D = PE$?
∴?$∠P AD=∠P DA,$??$∠P AE=∠PEA$?
∴?$∠PDB+∠PEC=∠PAD+∠PAE=60°$?
∵?$∠CPE+∠PEC=180°-∠PCE=60°$?
∴?$∠BDP=∠CPE$?
?$ $?在?$\triangle BDP $?和?$\triangle CPE$?中
?$\begin {cases}∠DBP=∠P CE\\∠BDP=∠CPE\\P D = PE\end {cases}$?
∴?$\triangle BDP≌\triangle CPE(\mathrm {AAS})$?
?$ (2)$?解:存在
∵?$\triangle BDP≌\triangle CPE$?
∴?$BD = CP$?
?$ \triangle BDP $?的周長?$=BD + BP + DP=CP + BP + DP=BC + DP$?
∵?$BC = 10,$?∴當(dāng)?$DP $?最小時,?$\triangle BDP $?的周長最小
∵?$P A = P D$?
∴當(dāng)?$AP\perp BC$?時,?$AP {最小},$?即?$DP $?最小
∵?$\triangle ABC$?是等邊三角形,?$AP\perp BC$?
∴?$BP=\frac 12BC = 5$?
?$ $?即當(dāng)?$BP = 5$?時,?$\triangle BDP $?的周長最小