解:?$(2)$?分兩種情況:
?$ ①$?當?$OF $?在?$∠AOD$?內(nèi)部時,
?$ $?因為?$OE\perp AB,$??$OF\perp CD,$?
?$ $?所以?$∠EOB = 90°,$??$∠FOD = 90°。$?
?$ $?已知?$∠DOE = 62°,$?
?$ $?則?$∠BOF=∠FOD-∠BOD,$?
?$ $?又因為?$∠BOD = ∠AOC = 28°($?對頂角相等?$),$?
?$ $?所以?$∠BOF = 90°- 28°=62°,$?
?$ ∠EOF=∠EOB+∠BOF=90°+62°=152°。$?
?$ ②$?當?$OF $?在?$∠BOC$?內(nèi)部時,
?$ $?因為?$OE\perp AB,$??$OF\perp CD,$?
?$ $?所以?$∠EOA = 90°,$??$∠FOC = 90°。$?
?$ ∠AOC = 28°,$?
?$ ∠EOF=∠FOC-∠EOC,$?
?$ ∠EOC=∠EOA-∠AOC=90°-28°=62°,$?
?$ $?所以?$∠EOF = 90°-62°=28°。$?
綜上,?$∠EOF $?的大小為?$152°$?或?$28°。$?