亚洲激情+欧美激情,无码任你躁久久久久久,我的极品美女老婆,性欧美牲交在线视频,亚洲av高清在线一区二区三区

電子課本網(wǎng) 第179頁

第179頁

信息發(fā)布者:
60
80
解: (2) 根據(jù)題意知,轎車出現(xiàn)故障前行駛了$80\times2 = 160(km),$$\therefore$轎車修好后到達甲地所需時間為$\frac{320 - 160}{80}=2(h),$$\therefore 5 - 2 = 3,$$\therefore D(3,0)。$$\therefore$貨車$2h$駛的路程為$2\times60 = 120(km),$$\therefore 160 + 120 = 280(km),$$\therefore E(5,280)。$設(shè)線段$DE$所在直線的函數(shù)表達式為$y = kx + b,$把$D,$$E$坐標(biāo)代入表達式,得$\begin{cases}3k + b = 0\\5k + b = 280\end{cases},$解得$\begin{cases}k = 140\\b = -420\end{cases}。$$\therefore$線段$DE$所在直線的函數(shù)表達式為$y = 140x - 420。$
(3) 由題意得,貨車到達乙地的時間為$3+\frac{8}{3}=\frac{17}{3}(h)。$
證明: (1) $\because AD\perp ED,$$BE\perp ED,$$\therefore\angle ADC=\angle CEB = 90^{\circ}。$又$\because\angle ACD+\angle ACB+\angle BCE = 180^{\circ},$$\angle ACB = 90^{\circ},$$\therefore\angle ACD+\angle BCE = 90^{\circ}。$又$\because\angle ACD+\angle DAC = 90^{\circ},$$\therefore\angle DAC=\angle ECB。$在$\triangle BEC$和$\triangle CDA$中,$\begin{cases}\angle CEB=\angle ADC\\\angle ECB=\angle DAC\\BC = CA\end{cases},$$\therefore\triangle BEC\cong\triangle CDA(AAS)。$
(2) 在$l_2$上取點$D,$使$AD = AB,$過點$D$作$DE\perp OA,$垂足為$E。$$\because$直線$y=\frac{4}{3}x + 4$與坐標(biāo)軸交于點$A,$$B,$$\therefore A(-3,0),$$B(0,4),$$\therefore OA = 3,$$OB = 4。$由
(1)同理得$\triangle BOA\cong\triangle AED,$$\therefore DE = OA = 3,$$AE = OB = 4,$$\therefore OE = 7,$$\therefore D(-7,3)。$設(shè)直線$l_2$的函數(shù)表達式為$y = kx + b,$$\therefore\begin{cases}-7k + b = 3\\-3k + b = 0\end{cases},$解得$\begin{cases}k = -\frac{3}{4}\\b = -\frac{9}{4}\end{cases},$$\therefore$直線$l_2$的函數(shù)表達式為$y = -\frac{3}{4}x-\frac{9}{4}。$
(3) 分三種情況:
①當(dāng)$\angle CPD = 90^{\circ}$時,過$P$作$MH// x$軸,過$D$作$DH// y$軸,$MH$和$DH$交于$H。$$\because\triangle CPD$是等腰直角三角形,$\therefore\angle CPD = 90^{\circ},$$CP = PD。$同
(1)得$\triangle CMP\cong\triangle PHD,$$\therefore DH = PM = 6,$$PH = CM。$設(shè)$PH = a,$則$D(6 + a,a - 8 - 6)。$$\because$點$D$是直線$y=-2x + 2$上的動點且在第四象限內(nèi),$\therefore a - 8 - 6=-2(6 + a)+2,$解得$a=\frac{4}{3},$$\therefore D\left(\frac{22}{3},-\frac{38}{3}\right)。$
②當(dāng)$\angle PCD = 90^{\circ}$時,此時點$P$與點$A$重合,過$D$作$DE\perp y$軸于$E。$$\because\triangle CPD$是等腰直角三角形,同
(1)得$\triangle AOC\cong\triangle CED,$$\therefore OA = CE = 6,$$OC = DE = 8,$$\therefore D(8,-14)。$
③當(dāng)$\angle CDP = 90^{\circ}$時,過點$D$作$MQ// x$軸,延長$AB$交$MQ$于$Q,$則$\angle Q=\angle DMC = 90^{\circ}。$$\because\triangle CDP$是等腰直角三角形,同
(1)得$\triangle PQD\cong\triangle DMC,$$\therefore PQ = DM,$$DQ = CM。$設(shè)$CM = b,$則$DM = 6 - b,$$AQ = 8 + b,$$\therefore D(6 - b,-8 - b)。$$\because$點$D$是直線$y=-2x + 2$上的動點且在第四象限內(nèi),$\therefore -8 - b=-2(6 - b)+2,$解得$b=\frac{2}{3},$$\therefore D\left(\frac{16}{3},-\frac{26}{3}\right)。$
綜上,點$D$的坐標(biāo)為$\left(\frac{22}{3},-\frac{38}{3}\right)$或$(8,-14)$或$\left(\frac{16}{3},-\frac{26}{3}\right)。$