解:
(1)由題意,$\begin{cases}8a + 7b = 670\\4a + 5b = 410\end{cases},$
由$4a + 5b = 410$兩邊同時(shí)乘以$2$得$8a+10b = 820,$
用$8a+10b = 820$減去$8a + 7b = 670$得:
$(8a+10b)-(8a + 7b)=820 - 670,$
$8a+10b - 8a - 7b = 150,$
$3b = 150,$
解得$b = 50,$
把$b = 50$代入$4a + 5b = 410$得$4a+5×50 = 410,$
$4a+250 = 410,$
$4a=410 - 250,$
$4a = 160,$
解得$a = 40。$
(2)$\because$購(gòu)買$A$種型號(hào)吉祥物$x$個(gè),$\therefore$購(gòu)買$B$種型號(hào)吉祥物$(90 - x)$個(gè)。
$\because$購(gòu)買$A$種型號(hào)吉祥物的數(shù)量$x$(單位:個(gè))不少于$B$種型號(hào)吉祥物數(shù)量的$\frac{4}{3},$$\therefore x\geqslant\frac{4}{3}(90 - x),$
$3x\geqslant4(90 - x),$
$3x\geqslant360 - 4x,$
$3x + 4x\geqslant360,$
$7x\geqslant360,$
解得$x\geqslant\frac{360}{7}。$
又$\because$購(gòu)買$A$種型號(hào)吉祥物的數(shù)量不超過$B$種型號(hào)吉祥物數(shù)量的$2$倍,$\therefore x\leqslant2(90 - x),$
$x\leqslant180 - 2x,$
$x + 2x\leqslant180,$
$3x\leqslant180,$
解得$x\leqslant60,$$\therefore\frac{360}{7}\leqslant x\leqslant60。$
由題知,$y=(40 - 35)x+(50 - 42)(90 - x)=5x + 8(90 - x)=5x+720 - 8x=-3x + 720,$
$\because -3\lt0,$$\therefore y$隨$x$的增大而減小,$\therefore$當(dāng)$x = 52$時(shí),$y$最大,最大值為$y=-3×52 + 720=-156 + 720 = 564。$