亚洲激情+欧美激情,无码任你躁久久久久久,我的极品美女老婆,性欧美牲交在线视频,亚洲av高清在线一区二区三区

電子課本網(wǎng) 第109頁

第109頁

信息發(fā)布者:
B
(1,3)
(1,4)
(2)解:已知線段$AB,$$A(1,1),$$B(3,1),$進行“$a$型平移”后,$A'(1 + a,1 - a),$$B'(3 + a,1 - a)。$
當線段$A'B'$與$x$軸有公共點時,即$1 - a = 0,$解得$a = 1;$
當線段$A'B'$與$y$軸有公共點時,即$\begin{cases}1 + a\leqslant0\\3 + a\geqslant0\end{cases},$
解$1 + a\leqslant0$得$a\leqslant - 1,$解$3 + a\geqslant0$得$a\geqslant - 3,$所以$-3\leqslant a\leqslant - 1。$
故$a$的取值范圍為$-3\leqslant a\leqslant - 1$或$a = 1。$
(3)解:因為點$C(4,0),$$D(6,-2),$將線段$CD$進行“$1$型平移”后得到的對應線段為$C'D',$則$C'(5,-1),$$D'(7,-3)。$
又$A(1,1),$$B(3,1),$$O(0,0),$所以$AB = 3 - 1 = 2,$$S_{\triangle ABO}=\frac{1}{2}\times AB\times y_{A}=\frac{1}{2}\times2\times1 = 1,$則$S_{\triangle MC'D'}=5S_{\triangle ABO}=5。$
①當點$M$在$y$軸上時,設$M(0,a),$
則$S_{\triangle MC'D'}=\frac{1}{2}\times5\times|a + 3| = 5,$
即$|a + 3| = 2,$
當$a + 3 = 2$時,$a = - 1;$當$a + 3 = - 2$時,$a=-5$(舍去),所以$M_1(0,-1);$
②當點$M$在$x$軸上時,設$M(b,0),$
$S_{\triangle MC'D'}=S_{\triangle MCD'}-S_{\triangle MCC'},$
$S_{\triangle MCD'}=\frac{1}{2}MC\cdot|y_{D'}|=\frac{1}{2}\times|b - 4|\times3,$$S_{\triangle MCC'}=\frac{1}{2}MC\cdot|y_{C'}|=\frac{1}{2}\times|b - 4|\times1,$
則$\frac{1}{2}MC\cdot y_{D'}-\frac{1}{2}MC\cdot y_{C'}=\frac{1}{2}MC(y_{D'}-y_{C'})=\frac{1}{2}\times|b - 4|\times(3 - 1)=|b - 4| = 5,$
解得$b = 9$或$b = - 1,$所以$M_2(9,0),$$M_3(-1,0);$
③當點$M$在$y$軸上且在$x$軸上方時,設$M(0,m),$
根據(jù)圖形面積關系$\frac{7(m + 3)}{2}=5+\frac{5(m + 1)}{2}+\frac{(5 + 7)\times2}{2},$
$7(m + 3)=10 + 5(m + 1)+12\times2,$
$7m+21 = 10 + 5m + 5+24,$
$7m - 5m=10 + 5+24 - 21,$
$2m = 18,$解得$m = 9,$所以$M_4(0,9)。$
綜上,點$M$的坐標為$M_1(0,-1),$$M_2(9,0),$$M_3(-1,0),$$M_4(0,9)。$
(2,0)
(1,2)