解: (2)$PA = PE。$理由如下:如圖①,延長$EB$至點$H,$使$BH = BP,$連接$PH。$
$\because\triangle ABC$是等邊三角形,$\therefore AB = BC,$$\angle ACB=\angle ABC = 60^{\circ}。$
$\because BM// AC,$$\therefore\angle ACB=\angle CBH = 60^{\circ}。$又$\because BP = BH,$$\therefore\triangle BPH$是等邊三角形,$\therefore PH = BP = BH,$$\angle H = 60^{\circ}=\angle ABC=\angle APE=\angle BPH,$$\therefore\angle APB=\angle EPH,$$\therefore\triangle APB\cong\triangle EPH(ASA),$$\therefore PA = PE。$
(3)當點$P$在$BC$上時,$BC = BP + BE;$當點$P$在線段$CB$的延長線上時,$BE = BP + BC。$理由如下:當點$P$在$BC$上時,由
(2)可知,$\triangle APB\cong\triangle EPH,$$\therefore AB = EH,$$\therefore BC = EH = EB + BH = BE + BP。$當點$P$在線段$CB$的延長線上時,如圖②,在$BE$上截取$BH = BP,$連接$PH。$
$\because\triangle ABC$是等邊三角形,$\therefore AB = BC,$$\angle ACB=\angle ABC = 60^{\circ}。$
$\because BM// AC,$$\therefore\angle ACB=\angle PBH = 60^{\circ}。$又$\because BP = BH,$$\therefore\triangle BPH$是等邊三角形,$\therefore PH = BP = BH,$$\angle BHP = 60^{\circ}=\angle ABC=\angle APE=\angle BPH,$$\therefore\angle APB=\angle EPH,$$\angle EHP=\angle ABP = 120^{\circ},$$\therefore\triangle APB\cong\triangle EPH(ASA),$$\therefore EH = AB,$$\therefore BE = BH + EH = BP + BC。$