亚洲激情+欧美激情,无码任你躁久久久久久,我的极品美女老婆,性欧美牲交在线视频,亚洲av高清在线一区二区三区

電子課本網(wǎng) 第103頁

第103頁

信息發(fā)布者:
$\angle PAC$
解: (1)設$BD = 2x,$$AD = 3x,$$CD = 4x,$則$AB = 5x,$在$Rt\triangle ACD$中,$AC^{2}=AD^{2}+CD^{2},$$\therefore AC = 5x,$$\therefore AB = AC,$$\therefore\triangle ABC$是等腰三角形。
(2)$S_{\triangle ABC}=\frac{1}{2}\times5x\times4x = 40,$而$x\gt0,$$\therefore x = 2,$則$BD = 4$ $cm,$$AD = 6$ $cm,$$CD = 8$ $cm,$$AC = 10$ $cm。$
①當$MN// BC$時,$AM = AN,$即$10 - t = t,$$\therefore t = 5;$當$DN// BC$時,$AD = AN,$得$t = 6。$若$\triangle DMN$的邊與$BC$平行,則$t$的值為$5$或$6。$
②能。當點$M$在$BD$上,即$0\leq t\lt4$時,$\triangle MDE$為鈍角三角形,但$DM\neq DE;$當$t = 4$時,點$M$運動到點$D,$不構成三角形;當點$M$在$DA$上,即$4\lt t\leq10$時,$\triangle MDE$為等腰三角形,有$3$種可能。若$DE = DM,$則$t - 4 = 5,$$\therefore t = 9;$若$ED = EM,$則點$M$運動到點$A,$$\therefore t = 10;$若$MD = ME = t - 4。$過點$E$作$EF\perp AB$于點$F,$$\because ED = EA,$$\therefore DF = AF=\frac{1}{2}AD = 3$ $cm,$在$Rt\triangle AEF$中,$EF = 4$ $cm。$$\because BM = t$ $cm,$$BF = 7$ $cm,$$\therefore FM=\vert t - 7\vert$ $cm。$在$Rt\triangle EFM$中,$(t - 4)^{2}-(t - 7)^{2}=4^{2},$$\therefore t=\frac{49}{6}。$
綜上所述,符合要求的$t$的值為$9$或$10$或$\frac{49}{6}。$
解: (2)$PA = PE。$理由如下:如圖①,延長$EB$至點$H,$使$BH = BP,$連接$PH。$
$\because\triangle ABC$是等邊三角形,$\therefore AB = BC,$$\angle ACB=\angle ABC = 60^{\circ}。$
$\because BM// AC,$$\therefore\angle ACB=\angle CBH = 60^{\circ}。$又$\because BP = BH,$$\therefore\triangle BPH$是等邊三角形,$\therefore PH = BP = BH,$$\angle H = 60^{\circ}=\angle ABC=\angle APE=\angle BPH,$$\therefore\angle APB=\angle EPH,$$\therefore\triangle APB\cong\triangle EPH(ASA),$$\therefore PA = PE。$
(3)當點$P$在$BC$上時,$BC = BP + BE;$當點$P$在線段$CB$的延長線上時,$BE = BP + BC。$理由如下:當點$P$在$BC$上時,由
(2)可知,$\triangle APB\cong\triangle EPH,$$\therefore AB = EH,$$\therefore BC = EH = EB + BH = BE + BP。$當點$P$在線段$CB$的延長線上時,如圖②,在$BE$上截取$BH = BP,$連接$PH。$
$\because\triangle ABC$是等邊三角形,$\therefore AB = BC,$$\angle ACB=\angle ABC = 60^{\circ}。$
$\because BM// AC,$$\therefore\angle ACB=\angle PBH = 60^{\circ}。$又$\because BP = BH,$$\therefore\triangle BPH$是等邊三角形,$\therefore PH = BP = BH,$$\angle BHP = 60^{\circ}=\angle ABC=\angle APE=\angle BPH,$$\therefore\angle APB=\angle EPH,$$\angle EHP=\angle ABP = 120^{\circ},$$\therefore\triangle APB\cong\triangle EPH(ASA),$$\therefore EH = AB,$$\therefore BE = BH + EH = BP + BC。$