(1)證明:
$\because AD$是$\triangle ABC$的角平分線,$\therefore\angle BAD=\angle CAD。$
由作圖知$AE = AF。$
在$\triangle ADE$和$\triangle ADF$中,
$\begin{cases}AE = AF\\\angle BAD=\angle CAD\\AD = AD\end{cases}$
$\therefore\triangle ADE\cong\triangle ADF(SAS)。$
(2)解:
$\because\angle BAC = 80^{\circ},$$AD$為$\triangle ABC$的角平分線,$\therefore\angle EAD=\frac{1}{2}\angle BAC = 40^{\circ}。$
由作圖知$AE = AD,$$\therefore\angle AED=\angle ADE,$
$\therefore\angle ADE=\frac{1}{2}\times(180^{\circ}-40^{\circ}) = 70^{\circ}。$
$\because AB = AC,$$\therefore AD\perp BC,$$\therefore\angle BDE = 90^{\circ}-\angle ADE = 20^{\circ}。$