亚洲激情+欧美激情,无码任你躁久久久久久,我的极品美女老婆,性欧美牲交在线视频,亚洲av高清在线一区二区三区

電子課本網(wǎng) 第96頁

第96頁

信息發(fā)布者:
解: 連接$EE'.$$\because \triangle ABE$繞點(diǎn)$B$順時(shí)針旋轉(zhuǎn)$90^{\circ}$到$\triangle CBE'$的位置,$\therefore \angle EBE' = 90^{\circ},$$\therefore \triangle EBE'$是直角三角形.$\because \triangle ABE$與$\triangle CBE'$全等,$\therefore BE = BE' = 2,$$\angle AEB=\angle CE'B,$$\therefore \angle BEE'=\angle BE'E = 45^{\circ},$$\therefore EE'^{2}=2^{2}+2^{2}=8,$$AE = CE' = 1.$ 又$EC = 3,$$EC^{2}=E'C^{2}+EE'^{2},$$\therefore \triangle EE'C$是直角三角形,$\therefore \angle EE'C = 90^{\circ},$$\therefore \angle BE'C=\angle BE'E+\angle EE'C = 135^{\circ},$$\therefore \angle AEB = 135^{\circ}.$
證明: (1) 由折疊的性質(zhì)得$\angle CEF=\angle AEF.$$\because$四邊形$ABCD$是長方形,$\therefore AD// BC,$$\therefore \angle AFE=\angle CEF,$$\therefore \angle AEF=\angle AFE,$$\therefore AE = AF,$$\therefore \triangle AEF$是等腰三角形.
(2)$\because$四邊形$ABCD$是長方形,$\therefore AD = BC = 8,$$AB = CD = 4,$$\angle D = 90^{\circ}.$ 設(shè)$FD = x,$則$AF = 8 - x.$ 由折疊的性質(zhì)得$GF = FD = x,$$AG = CD = 4,$$\angle AGF=\angle D = 90^{\circ},$$\therefore$在$Rt\triangle AGF$中,有$AG^{2}+GF^{2}=AF^{2},$即$4^{2}+x^{2}=(8 - x)^{2},$
$\begin{aligned}16+x^{2}&=64-16x+x^{2}\\16x&=48\\x&=3\end{aligned}$
即線段$FD$的長為$3.$
0
7
$解: (2) 如圖②,過點(diǎn)A作AD\perp BC于點(diǎn)D.\because AB = AC,\angle BAC = 120^{\circ},\therefore AD為邊BC上的中線,\angle ABC=\frac{1}{2}(180^{\circ}-\angle BAC)=30^{\circ}. 在Rt\triangle ABD中,\because AB = 4,\angle ABC = 30^{\circ},易得AD=\frac{1}{2}AB = 2,\therefore BD^{2}=AB^{2}-AD^{2}=4^{2}-2^{2}=12,\therefore AB\triangle AC=AD^{2}-BD^{2}=2^{2}-12=4 - 12=-8. 過點(diǎn)B作BE\perp AC,交CA的延長線于點(diǎn)E,取AC的中點(diǎn)F,連接BF,\therefore AF=\frac{1}{2}AC = 2,\angle BEA = 90^{\circ},\therefore \angle ABE=\angle BAC-\angle BEA = 120^{\circ}-90^{\circ}=30^{\circ}. 在Rt\triangle ABE中,\because AB = 4,\angle ABE = 30^{\circ},易得AE=\frac{1}{2}AB = 2,\therefore BE^{2}=AB^{2}-AE^{2}=4^{2}-2^{2}=12. 在Rt\triangle BEF中,\because BE^{2}=12,EF = AE + AF=2 + 2 = 4,\therefore BF^{2}=BE^{2}+EF^{2}=12 + 16 = 28,\therefore BA\triangle BC=BF^{2}-AF^{2}=28 - 4 = 24.$
$ (3) 如圖③,取AN的中點(diǎn)M,連接BM.\because ON=\frac{1}{3}AO,\therefore設(shè)AM = MN = NO = x.\because AB\triangle AC=AO^{2}-BO^{2}=9x^{2}-BO^{2}=14,\therefore BO^{2}=9x^{2}-14.\because BN\triangle BA=BM^{2}-AM^{2}=BM^{2}-x^{2}=10,\therefore BM^{2}=x^{2}+10.\because BO^{2}+OM^{2}=BM^{2},\therefore (9x^{2}-14)+4x^{2}=x^{2}+10,$
$ \begin{aligned} 9x^{2}-14 + 4x^{2}&=x^{2}+10 \\ 12x^{2}&=24 \\ x^{2}&=2 \\ \end{aligned}$
$ \therefore BO^{2}=9x^{2}-14=4,\therefore BO = 2,BC = 2BO = 4.$