亚洲激情+欧美激情,无码任你躁久久久久久,我的极品美女老婆,性欧美牲交在线视频,亚洲av高清在线一区二区三区

電子課本網(wǎng) 第32頁

第32頁

信息發(fā)布者:
(1)證明:$\because DF\perp AB,$$\angle ACB = 90^{\circ},$
$\therefore \triangle ADF,$$\triangle ACE$是直角三角形.
在$Rt\triangle ACE$和$Rt\triangle ADF$中,
$\begin{cases}AE = AF \\AC = AD\end{cases}$
$\therefore Rt\triangle ACE\cong Rt\triangle ADF(HL),$
$\therefore CE = DF.$
(2)證明:$\because EF\perp BC,$$DF\perp AB,$
$\therefore \angle CEF = 90^{\circ},$$\angle BDF = 90^{\circ},$
$\therefore \angle BFD + \angle ABF = 90^{\circ}.$
又$\because \angle ACB = \angle ACF + \angle ECF = 90^{\circ},$$\angle ACF = \angle ABF,$
$\therefore \angle BFD = \angle ECF.$
在$\triangle FCE$和$\triangle BFD$中,
$\begin{cases}\angle ECF = \angle DFB \\\angle CEF = \angle FDB = 90^{\circ} \\EF = FD\end{cases}$
$\therefore \triangle FCE\cong\triangle BFD(ASA),$
$\therefore FC = FB.$
又$\because EF\perp BC,$
$\therefore$點$F$在$BC$的垂直平分線上.
(1)證明:$\because MN\perp AB,$
$\therefore \angle ACP = \angle BCP = 90^{\circ}.$
在$\triangle ACP$和$\triangle BCP$中,
$\begin{cases}AC = BC \\\angle ACP = \angle BCP \\PC = PC\end{cases}$
$\therefore \triangle ACP\cong\triangle BCP(SAS),$
$\therefore PA = PB.$
(2)①解:$\because MN$垂直平分$AB,$
$\therefore MB = MA.$
$\because \triangle MBC$的周長是$18\ cm,$
$\therefore MB + MC + BC = MA + MC + BC = AC + BC = 18\ cm.$
$\because AC = AB = 10\ cm,$
$\therefore BC = 8\ cm.$
②解:存在.
$\because MN$垂直平分$AB,$
$\therefore PA = PB,$
$\therefore \triangle PBC$的周長$= PB + PC + BC = PA + PC + BC,$
$\therefore$當(dāng)$A,$$P,$$C$三點共線,即點$P$與點$M$重合時,$PA + PC$的值最小,即此時$\triangle PBC$的周長最小,最小值為$PA + PC + 8 = AC + 8 = 18\ cm.$