(1)證明:$\because DF\perp AB,$$\angle ACB = 90^{\circ},$
$\therefore \triangle ADF,$$\triangle ACE$是直角三角形.
在$Rt\triangle ACE$和$Rt\triangle ADF$中,
$\begin{cases}AE = AF \\AC = AD\end{cases}$
$\therefore Rt\triangle ACE\cong Rt\triangle ADF(HL),$
$\therefore CE = DF.$
(2)證明:$\because EF\perp BC,$$DF\perp AB,$
$\therefore \angle CEF = 90^{\circ},$$\angle BDF = 90^{\circ},$
$\therefore \angle BFD + \angle ABF = 90^{\circ}.$
又$\because \angle ACB = \angle ACF + \angle ECF = 90^{\circ},$$\angle ACF = \angle ABF,$
$\therefore \angle BFD = \angle ECF.$
在$\triangle FCE$和$\triangle BFD$中,
$\begin{cases}\angle ECF = \angle DFB \\\angle CEF = \angle FDB = 90^{\circ} \\EF = FD\end{cases}$
$\therefore \triangle FCE\cong\triangle BFD(ASA),$
$\therefore FC = FB.$
又$\because EF\perp BC,$
$\therefore$點$F$在$BC$的垂直平分線上.