解:(1)$\triangle ACP\cong\triangle BPQ,$且$PC\perp PQ。$理由如下:
當(dāng)$t = 1$時(shí),$AP = BQ = 1cm,$$BP = AC = 3cm。$
因?yàn)?AC\perp AB,$$BD\perp AB,$所以$\angle A=\angle B = 90^{\circ}。$
在$\triangle ACP$和$\triangle BPQ$中,$\begin{cases}AP = BQ\\\angle A=\angle B\\AC = BP\end{cases},$
所以$\triangle ACP\cong\triangle BPQ(SAS),$所以$\angle ACP=\angle BPQ,$
所以$\angle APC+\angle BPQ=\angle APC+\angle ACP = 90^{\circ},$所以$\angle CPQ = 90^{\circ},$即$PC\perp PQ。$
(2)存在滿足條件的$x$值及相應(yīng)的$t$值。
①若$\triangle ACP\cong\triangle BPQ,$則$AC = BP,$$AP = BQ。$可得$\begin{cases}3 = 4 - t\\t = xt\end{cases},$解得$\begin{cases}t = 1\\x = 1\end{cases}。$
②若$\triangle ACP\cong\triangle BQP,$則$AC = BQ,$$AP = BP,$可得$\begin{cases}3 = xt\\t = 4 - t\end{cases},$解得$\begin{cases}t = 2\\x = 1.5\end{cases}。$
綜上所述,存在$t = 1,$$x = 1$或$t = 2,$$x = 1.5,$使得$\triangle ACP$與$\triangle BPQ$全等。