亚洲激情+欧美激情,无码任你躁久久久久久,我的极品美女老婆,性欧美牲交在线视频,亚洲av高清在线一区二区三区

電子課本網(wǎng) 第29頁(yè)

第29頁(yè)

信息發(fā)布者:
解:(1)$\triangle BPE$與$\triangle CQP$全等。理由如下:
因?yàn)辄c(diǎn)$E$為$AB$的中點(diǎn),$AB = 20cm,$所以$BE=\frac{1}{2}AB=\frac{1}{2}\times20 = 10(cm)。$
因?yàn)辄c(diǎn)$P,$$Q$的速度都是$5cm/s,$經(jīng)過(guò)$1s$后,$BP = 5cm,$$PC=BC - BP=15 - 5 = 10(cm),$$CQ = 5cm。$
在$\triangle BPE$與$\triangle CQP$中,$\begin{cases}BE = CP\\\angle B=\angle C\\BP = CQ\end{cases},$
所以$\triangle BPE\cong\triangle CQP(SAS)。$
(2)$\triangle BPE$與$\triangle CQP$全等時(shí),
①若$CQ = BE = 10cm,$則$BP = CP = 7.5cm,$點(diǎn)$Q$的運(yùn)動(dòng)速度為$v_Q=10\div(7.5\div5)=\frac{20}{3}(cm/s);$
②若$CP = BE = 10cm,$$BP = CQ = 5cm,$點(diǎn)$Q$的運(yùn)動(dòng)速度為$v_Q=5\div(5\div5)=5(cm/s)。$
因?yàn)辄c(diǎn)$Q$的運(yùn)動(dòng)速度與點(diǎn)$P$的運(yùn)動(dòng)速度不相等,所以$v_Q = 5cm/s$舍去,
所以點(diǎn)$Q$的運(yùn)動(dòng)速度為$\frac{20}{3}cm/s$時(shí),能夠使$\triangle BPE$與$\triangle CQP$全等。
解:(1)$\triangle ACP\cong\triangle BPQ,$且$PC\perp PQ。$理由如下:
當(dāng)$t = 1$時(shí),$AP = BQ = 1cm,$$BP = AC = 3cm。$
因?yàn)?AC\perp AB,$$BD\perp AB,$所以$\angle A=\angle B = 90^{\circ}。$
在$\triangle ACP$和$\triangle BPQ$中,$\begin{cases}AP = BQ\\\angle A=\angle B\\AC = BP\end{cases},$
所以$\triangle ACP\cong\triangle BPQ(SAS),$所以$\angle ACP=\angle BPQ,$
所以$\angle APC+\angle BPQ=\angle APC+\angle ACP = 90^{\circ},$所以$\angle CPQ = 90^{\circ},$即$PC\perp PQ。$
(2)存在滿足條件的$x$值及相應(yīng)的$t$值。
①若$\triangle ACP\cong\triangle BPQ,$則$AC = BP,$$AP = BQ。$可得$\begin{cases}3 = 4 - t\\t = xt\end{cases},$解得$\begin{cases}t = 1\\x = 1\end{cases}。$
②若$\triangle ACP\cong\triangle BQP,$則$AC = BQ,$$AP = BP,$可得$\begin{cases}3 = xt\\t = 4 - t\end{cases},$解得$\begin{cases}t = 2\\x = 1.5\end{cases}。$
綜上所述,存在$t = 1,$$x = 1$或$t = 2,$$x = 1.5,$使得$\triangle ACP$與$\triangle BPQ$全等。
解:(1)在$\triangle ABC$和$\triangle EDC$中,$\begin{cases}AC = EC\\\angle ACB=\angle ECD\\BC = DC\end{cases},$
所以$\triangle ABC\cong\triangle EDC(SAS),$所以$\angle A=\angle E,$$AB = DE,$所以$AB// DE。$
(2)當(dāng)$0\leq t\leq\frac{4}{3}$時(shí),$AP = 3t cm;$
當(dāng)$\frac{4}{3}<t\leq\frac{8}{3}$時(shí),$BP=(3t - 4)cm,$則$AP = 4-(3t - 4)=(8 - 3t)cm。$
(3)如圖,由(1)得,$\angle A=\angle E,$$ED = AB = 4cm,$
在$\triangle ACP$和$\triangle ECQ$中,$\begin{cases}\angle A=\angle E\\AC = EC\\\angle ACP=\angle ECQ\end{cases},$
所以$\triangle ACP\cong\triangle ECQ(ASA),$所以$AP = EQ。$
當(dāng)$0\leq t\leq\frac{4}{3}$時(shí),$3t = 4 - t,$解得$t = 1;$
當(dāng)$\frac{4}{3}<t\leq\frac{8}{3}$時(shí),$8 - 3t = 4 - t,$解得$t = 2。$
綜上所述,當(dāng)線段$PQ$經(jīng)過(guò)點(diǎn)$C$時(shí),$t$的值為$1$或$2。$