解:如圖,連接$OA$、$OB$、$OF,$設(shè)$OB$交$AF$于點(diǎn)$G。$
因?yàn)?AB\perp CD,$$CD$為$\odot O$的直徑,
所以$AE = BE=\frac{1}{2}AB = 3。$
設(shè)$\odot O$的半徑為$r,$則$OE = r - 1,$$OA = r。$
在$Rt\triangle OAE$中,由勾股定理,得$3^{2}+(r - 1)^{2}=r^{2},$
即$9+r^{2}-2r + 1=r^{2},$
$ - 2r=-10,$
解得$r = 5。$
因?yàn)?\overset{\frown}{AB}=\overset{\frown}{BF},$所以$∠AOB=∠FOB。$
又因?yàn)?AO = FO,$所以$OB\perp AF,$$AF = 2AG。$
設(shè)$OG = t,$則$BG = 5 - t。$
在$Rt\triangle AGO$中,$AG^{2}=5^{2}-t^{2};$在$Rt\triangle AGB$中,$AG^{2}=6^{2}-(5 - t)^{2}。$
所以$5^{2}-t^{2}=6^{2}-(5 - t)^{2},$
$25 - t^{2}=36-(25 - 10t + t^{2}),$
$25 - t^{2}=36 - 25 + 10t - t^{2},$
$10t = 14,$
解得$t=\frac{7}{5}。$
所以$AG=\sqrt{5^{2}-(\frac{7}{5})^{2}}=\sqrt{25-\frac{49}{25}}=\sqrt{\frac{625 - 49}{25}}=\sqrt{\frac{576}{25}}=\frac{24}{5},$
$AF = 2AG=\frac{48}{5}。$