亚洲激情+欧美激情,无码任你躁久久久久久,我的极品美女老婆,性欧美牲交在线视频,亚洲av高清在线一区二区三区

電子課本網(wǎng) 第160頁

第160頁

信息發(fā)布者:
解:?$(1) $?由題意可知,
?$S_{1}=a(a + 4b)=(a^2+4ab)$?平方米
?$S_{2}=(a + 3b)(a + 4b)-S_{1}$?
?$=(a + 3b)(a + 4b)-(a^2+4ab)$?
?$=(a^2+4ab+3ab + 12b^2)-(a^2+4ab)$?
?$=a^2+4ab+3ab + 12b^2-a^2-4ab$?
?$=(3ab + 12b^2)$?平方米
?$ (2) $?當(dāng)?$a = 2,$??$b = 4$?時(shí),
?$S_{2}=3ab + 12b^2$?
?$=3×2×4+12×4^2$?
?$=24 + 192 $?
?$= 216($?平方米?$)$?
$a - x$
解:?$(1) ②$?兩個(gè)正方形的面積之和
?$\begin {aligned}S &= x^2+(a - x)^2\\&=x^2+a^2-2ax+x^2\\&=2x^2-2ax + a^2\end {aligned}$?
?$ (2) $?因?yàn)樗倪呅?$APCD、$?四邊形?$PBEF $?均為正方形,
?$AP = x,$??$BP = a - x,$
?所以?$CF=PF - PC=a - x - x=a - 2x。$?
?$ $?陰影部分的面積?$S = S_{正方形APCD}+S_{正方形PBEF}+S_{\triangle FCD}-S_{\triangle ABD}-S_{\triangle EFB}$?
?$ \begin {aligned}&=x^2+(a - x)^2+\frac {1}{2}x·(a - 2x)-\frac {1}{2}x·a-\frac {1}{2}(a - x)^2\\&=x^2+\frac {1}{2}(a - x)^2+\frac {1}{2}x·(a - 2x)-\frac {1}{2}x·a\\&=x^2+\frac {1}{2}(a^2-2ax+x^2)+\frac {1}{2}(ax - 2x^2)-\frac {1}{2}ax\\&=x^2+\frac {1}{2}a^2-ax+\frac {1}{2}x^2+\frac {1}{2}ax - x^2-\frac {1}{2}ax\\&=\frac {1}{2}x^2+\frac {1}{2}a^2-ax\end {aligned}$?
?$ (a + b)^2=a^2+$?
?$2ab + b^2$?
$(a + b)(a - b)=a^{2}-b^{2}$
$10$