解:?$(1)$?因為點?$A$?的坐標(biāo)為?$(4,3),$??$\odot A$?的半徑為?$2,$?
過點?$A$?作直線?$l// x$?軸,點?$P $?在直線?$l$?上運動,
當(dāng)點?$P $?在?$\odot A$?上時,其縱坐標(biāo)為?$3,$?橫坐標(biāo)為?$4 - 2 = 2$?或?$4 + 2 = 6,$?
所以點?$P $?的坐標(biāo)為?$(2,3)$?或?$(6,3).$?
?$ (2)$?連接?$OA、$??$OP,$?過點?$A$?作?$AQ\perp OP,$?垂足為?$Q. $?
根據(jù)題意,得?$PA = 12 - 4 = 8,$??$OB = 3,$??$PO=\sqrt {12^2+3^2} = 3\sqrt {17}.$?
∵?$S_{\triangle PAO}=\frac {1}{2}PA·OB=\frac {1}{2}PO·AQ,$?
即?$\frac {1}{2}×8×3=\frac {1}{2}×3\sqrt {17}·AQ,$?
∴?$AQ=\frac {8\sqrt {17}}{17}.$?
∵?$\frac {8\sqrt {17}}{17}<2,$?
∴直線?$OP $?與?$\odot A$?相交?$.$?