亚洲激情+欧美激情,无码任你躁久久久久久,我的极品美女老婆,性欧美牲交在线视频,亚洲av高清在线一区二区三区

電子課本網(wǎng) 第51頁(yè)

第51頁(yè)

信息發(fā)布者:
$\angle ACE$
$\triangle BCD$
解:?$(2)$?四邊形?$OAEB$?為菱形。
理由:∵?$\triangle ABC$?為等邊三角形,
∴?$AC = BC,$??$∠ACB = 60°。$?
∵?$CO = CO,$??$OA = OB,$
?∴?$\triangle ACO\cong \triangle BCO,$?
∴?$∠ACO = ∠BCO = 30°。$?
∵?$\overset {\frown }{AE}=\overset {\frown }{AE},$?
∴?$∠AOE = 2∠ACO = 60°。$?
∵?$OA = OE,$?
∴?$\triangle OAE$?為等邊三角形,
∴?$OE = AE。$?
同理,可證?$OE = BE,$?∴?$OA = OB = AE = BE,$?
∴四邊形?$OAEB$?為菱形。
證明:?$(1)$?∵?$\triangle ABC$?為等腰直角三角形,?$∠BAC = 90°,$?
∴?$AB = AC,$??$∠C = ∠ABC = 45°。$?
∵?$\overset {\frown }{AP}=\overset {\frown }{AP},$?
∴?$∠AEP = ∠ABP = 45°。$?
∵?$PE$?是?$\odot O$?的直徑,
∴?$∠PAE = 90°,$?
∴?$∠APE = ∠AEP = 45°,$?
∴?$AP = AE,$?
∴?$\triangle APE$?是等腰直角三角形。
?$ (2)$?解:如圖,連接?$BE。$?
∵?$∠BAC = 90°,$??$∠PAE = 90°,$?
∴?$∠BAC = ∠PAE,$?
∴易得?$∠CAP = ∠BAE。$?
∵?$AC = AB,$??$AP = AE,$?
∴?$\triangle APC\cong \triangle AEB,$?
∴?$PC = EB。$?
∵?$PE$?是?$\odot O$?的直徑,
∴?$∠PBE = 90°,$?
∴在?$Rt\triangle PBE$?中,?$EB^2+PB^2=PE^2=2^2=4,$?
∴?$PC^2+PB^2=4。$?

解:分以下三種情況討論:
① 如圖①,當(dāng)點(diǎn)$P$在線段$OA$上時(shí),
在$\triangle QOC$中,$∵OC = OQ,$$∴∠Q = ∠C。$
在$\triangle OPQ$中,$∵QP = QO,$$∴∠QOP = ∠QPO。$
$∵∠AOC = 30°,$$∴∠QPO = ∠C+∠AOC = ∠C + 30°。$
又$∵∠QOP+∠QPO+∠Q = 180°,$即$(∠C + 30°)+(∠C + 30°)+∠C = 180°,$
$∴∠C = 40°,$即$∠OCP = 40°。$
② 如圖②,當(dāng)點(diǎn)$P$在線段$OA$的延長(zhǎng)線上時(shí),
在$\triangle QOC$中,$∵OC = OQ,$$∴∠OQP = ∠OCQ=\frac{1}{2}(180°-∠QOC)。$
在$\triangle OPQ$中,$∵QP = QO,$$∴∠OPQ = ∠QOP。$
又$∵∠OPQ+∠QOP+∠OQP = 180°,$$∠QOP = ∠QOC+∠AOC = ∠QOC + 30°,$
$∴(∠QOC + 30°)+(∠QOC + 30°)+\frac{1}{2}(180°-∠QOC)=180°,$
$∴∠QOC = 20°,$$∴∠OQP = 80°,$$∴∠OCP = ∠QOC+∠OQP = 100°。$
③ 如圖③,當(dāng)點(diǎn)$P$在線段$OA$的反向延長(zhǎng)線上時(shí),
在$\triangle QOC$中,$∵OC = OQ,$$∴∠OCP = ∠OQC。$
在$\triangle OPQ$中,$∵QO = QP,$$∴∠QPO = ∠QOP=\frac{1}{2}∠OQC=\frac{1}{2}∠OCP。$
$∵∠AOC = 30°,$$∴∠QPO+∠OCP = 30°,$即$\frac{1}{2}∠OCP+∠OCP = 30°,$
$∴∠OCP = 20°。$
綜上所述,$∠OCP$的度數(shù)為$40°$或$100°$或$20°。$