亚洲激情+欧美激情,无码任你躁久久久久久,我的极品美女老婆,性欧美牲交在线视频,亚洲av高清在线一区二区三区

第7頁

信息發(fā)布者:
D
$n\leqslant\frac{4}{3}$
4
解:
$\begin{aligned}(x+\frac{1}{9})^{2}&=0\\x+\frac{1}{9}&=0\\x_1&=x_2 = -\frac{1}{9}\end{aligned}$
解:
$\begin{aligned}\frac{1}{2}(x - 5)^{2}-16&=0\\\frac{1}{2}(x - 5)^{2}&=16\\(x - 5)^{2}&=32\\x-5&=\pm4\sqrt{2}\\x_1&=-4\sqrt{2}+5,x_2 = 4\sqrt{2}+5\end{aligned}$
解:
?$ \begin {aligned}(y + 0.3)(y - 0.3)-0.16&=0\\y ^2-0.09-0.16&=0\\y ^2&=0.25\\y &=\pm 0.5\end {aligned}$?
?$ $?所以?$y_{1} = 0.5,y_{2}=-0.5。$?
解:
?$ \begin {aligned}4(2m - 3)^2&=9(m - 1)^2\\2(2m - 3)&=\pm 3(m - 1)\end {aligned}$?
?$ $?當(dāng)?$2(2m - 3)=3(m - 1)$?時,?$4m-6 = 3m-3,$?
?$4m-3m=-3 + 6,$?
解得?$m_{1} = 3;$?
?$ $?當(dāng)?$2(2m - 3)=-3(m - 1)$?時,?$4m-6=-3m + 3,$?
?$4m+3m=3 + 6,$?
?$7m=9,$?
解得?$m_{2}=\frac {9}{7}。$?
解:令?$y=a^2+b^2,$?則原方程可化簡為?${(y-1)}^2=17,$?
直接開平方,得?$y-1=±\sqrt {17}$?
解得,?$y_{1}=-\sqrt {17}+1,$??$y_{2}=\sqrt {17}+1$?
∵?$y=a^2+b^2\geqslant 0$?
∴?$y=\sqrt {17}+1,$?即?$a^2+b^2=\sqrt {17}+1$?
解:當(dāng)$1\leqslant x\lt2$時,$\frac{1}{2}x^{2}=1,$即$x^{2}=2,$解得$x_1=\sqrt{2},x_2 = -\sqrt{2}$(不合題意,舍去);
當(dāng)$0\leqslant x\lt1$時,$\frac{1}{2}x^{2}=0,$即$x^{2}=0,$解得$x_3=x_4 = 0;$
當(dāng)$-1\leqslant x\lt0$時,$\frac{1}{2}x^{2}=-1,$方程沒有實數(shù)根;
當(dāng)$-2\leqslant x\lt-1$時,$\frac{1}{2}x^{2}=-2,$方程沒有實數(shù)根。
綜上所述,當(dāng)$-2\leqslant x\lt2$時,滿足$[x]=\frac{1}{2}x^{2}$的$x$的值為$\sqrt{2}$或$0。$