亚洲激情+欧美激情,无码任你躁久久久久久,我的极品美女老婆,性欧美牲交在线视频,亚洲av高清在线一区二区三区

電子課本網(wǎng) 第37頁(yè)

第37頁(yè)

信息發(fā)布者:
$\dfrac{2}{5}$
$\dfrac{1}{5}$
$-1$
解:(2)對(duì)于$y = -\dfrac{4}{3}x + 4b,$令$x = 0,$則$y = 4b,$所以$B(0,4b);$
令$y = 0,$則$0=-\dfrac{4}{3}x + 4b,$$\dfrac{4}{3}x = 4b,$$x = 3b,$所以$A(3b,0)。$
設(shè)$M(0,y_0),$因?yàn)?\triangle ABM$沿直線(xiàn)$AM$折疊,點(diǎn)$B$恰好落在$x$軸上的點(diǎn)$C$處,設(shè)$C(x_1,0)。$
由折疊性質(zhì)可知$AB = AC,$$AB=\sqrt{(3b)^{2}+(4b)^{2}} = 5b,$所以$AC = 5b,$
則$C(-2b,0)。$
設(shè)$AM$的解析式為$y=k_1x + y_0,$$AB$中點(diǎn)$\left(\dfrac{3b}{2},2b\right)$在$AM$上,且$k_{AB}=-\dfrac{4}{3},$
$k_{AM}\times k_{AB}=-1,$$k_{AM}=\dfrac{3}{4}。$
則$AM$的解析式為$y=\dfrac{3}{4}x + y_0,$
把$\left(\dfrac{3b}{2},2b\right)$代入得$2b=\dfrac{3}{4}\times\dfrac{3b}{2}+y_0,$
$y_0=2b-\dfrac{9b}{8}=\dfrac{7b}{8},$所以$M\left(0,\dfrac{7b}{8}\right)。$
設(shè)經(jīng)過(guò)$C$、$M$兩點(diǎn)的一次函數(shù)解析式為$y=k_2x + \dfrac{7b}{8},$
把$C(-2b,0)$代入得$0=-2bk_2+\dfrac{7b}{8},$$2bk_2=\dfrac{7b}{8},$$k_2=\dfrac{7}{16},$$y=\dfrac{7}{16}x+\dfrac{7b}{8}。$
因?yàn)楹瘮?shù)過(guò)點(diǎn)$(2,1),$所以$1=\dfrac{7}{16}\times2+\dfrac{7b}{8},$$1=\dfrac{7}{8}+\dfrac{7b}{8},$$\dfrac{7b}{8}=\dfrac{1}{8},$$b=\dfrac{1}{7}。$
此時(shí)函數(shù)為$y=\dfrac{3}{4}x-\dfrac{1}{2},$所以經(jīng)過(guò)$C$、$M$兩點(diǎn)的一次函數(shù)可以為“幸福函數(shù)”,函數(shù)表達(dá)式為$y=\dfrac{3}{4}x-\dfrac{1}{2}。$