解:(2)①
聯(lián)立$\begin{cases}y = -\dfrac{1}{2}x + 4\\y=\dfrac{3}{2}x\end{cases},$
將$y=\dfrac{3}{2}x$代入$y = -\dfrac{1}{2}x + 4$得:
$\dfrac{3}{2}x=-\dfrac{1}{2}x + 4,$
$\dfrac{3}{2}x+\dfrac{1}{2}x=4,$
$2x = 4,$解得$x = 2,$
則$y=\dfrac{3}{2}\times2 = 3,$所以$C(2,3)。$
對于$y = -\dfrac{1}{2}x + 4,$令$x = 0,$則$y = 4,$所以$B(0,4);$
令$y = 0,$則$0=-\dfrac{1}{2}x + 4,$$\dfrac{1}{2}x = 4,$$x = 8,$所以$A(8,0)。$
由勾股定理可得
$AB=\sqrt{4^{2}+8^{2}}=\sqrt{16 + 64}=\sqrt{80}=4\sqrt{5},$$OA = 8,$$OB = 4。$
$\triangle OAB$的周長為$OA + OB+AB=8 + 4+4\sqrt{5}=12 + 4\sqrt{5}。$
點(diǎn)$C(2,3)$向右平移$1$個(gè)單位長度,再向下平移$6$個(gè)單位長度得到點(diǎn)$D(2 + 1,3-6),$即$D(3,-3)。$
②
作點(diǎn)$D$關(guān)于$y$軸的對稱點(diǎn)$D'(-3,-3),$連接$CD'$交$y$軸于點(diǎn)$P。$
設(shè)直線$CD'$的解析式為$y=mx + n,$把$C(2,3),$$D'(-3,-3)$代入得:
$\begin{cases}2m + n=3\\-3m + n=-3\end{cases},$
兩式相減得:$2m + n-(-3m + n)=3-(-3),$
$2m + n + 3m - n=6,$
$5m = 6,$解得$m=\dfrac{6}{5},$
把$m=\dfrac{6}{5}$代入$2m + n=3$得:$2\times\dfrac{6}{5}+n=3,$$\dfrac{12}{5}+n=3,$$n=3-\dfrac{12}{5}=\dfrac{3}{5}。$
所以直線$CD'$的解析式為$y=\dfrac{6}{5}x+\dfrac{3}{5},$令$x = 0,$則$y=\dfrac{3}{5},$所以$P\left(0,\dfrac{3}{5}\right)。$
③
當(dāng)以$O$、$C$、$Q$、$D$四點(diǎn)為頂點(diǎn)的四邊形為平行四邊形時(shí):
若$OC$為對角線,則$Q_1(2 + 3,3-3),$即$Q_1(5,0);$
若$OD$為對角線,則$Q_2(2-3,3 + 3),$即$Q_2(-1,6);$
若$CD$為對角線,則$Q_3(3-2,-3-3),$即$Q_3(1,-6)。$
所以$Q$點(diǎn)坐標(biāo)為$(5,0)$或$(-1,6)$或$(1,-6)。$