解:解方程$\frac{1}{x - 2}+3=\frac{1 - x}{2 - x}$:
方程變形為$\frac{1}{x - 2}+3=\frac{x - 1}{x - 2}$
去分母得:$1 + 3(x - 2)=x - 1$
去括號(hào)得:$1+3x - 6=x - 1$
移項(xiàng)得:$3x - x=-1 - 1 + 6$
合并同類項(xiàng)得:$2x = 4$
系數(shù)化為$1$得:$x = 2$
檢驗(yàn):當(dāng)$x = 2$時(shí),$x - 2=0$
所以$x = 2$是增根,原方程無解