解:??$(1)b<c<a,$??理由如下:
因為??$a={2}^{-44444}={({2}^{-4})}^{11111}={(\frac 1 {16})}^{11111},$????$b={3}^{-33333}={({3}^{-3})}^{11111}={(\frac 1 {27})}^{11111},$??
??$c={5}^{-22222}={({5}^{-2})}^{11111}={(\frac 1{25})}^{11111},$??
又因為??$\frac 1 {27}<\frac 1 {25}<\frac 1 {16},$??
所以??${(\frac 1 {27})}^{11111}<{(\frac 1 {25})}^{11111}<{(\frac 1 {16})}^{11111},$??即??$b<c<a$??
??$(2)①$??當??$2x+3=1,$??則??$x=-1;$??
②當??$2x+3=-1$??且??$x+2020$??為偶數(shù),則??$x=-2;$??
③當??$x+2020=0,$??則??$x=-2020$??
綜上所述,當??$x=-1$??或??$-2$??或??$-2020$??時,??${(2x+3)}^{x+2020}=1$??成立