解:??$(1)$??由于??$30=3×1+27$??
設(shè)??$2g$??的砝碼有??$x$??個,則??$5g$??的砝碼有??$(15-3-x)$??個
??$27=2x+5(15-3-x)$??
解得,??$x=11$??
??$15-3-11=1$??
所以??$2g$??的砝碼有??$11$??個,??$5g$??的砝碼有??$1$??個
??$(2)$??設(shè)??$1g$??的砝碼有??$a$??個,??$2g$??的砝碼有??$b$??個,則??$5g$??的砝碼有??$(15-a-b)$??個
根據(jù)題意,得??$30=a+2b+5(15-a-b)=a+2b+75-5a-5b$??
則??$4a+3b=45$??
所以??${{\begin{cases} { {a=9,}} \\{b=3,}\end{cases}}}{{\begin{cases} { {a=6,}} \\{b=7,}\end{cases}}}{{\begin{cases} { {a=3,}} \\{b=11,}\end{cases}}}$??
故除第??$(1)$??小題的情況外,取出的砝碼數(shù)量如下:
??$①1g$??的砝碼有??$9$??個,??$2g$??的砝碼有??$3$??個,??$5g$??的砝碼有??$3$??個;
??$②1g$??的砝碼有??$6$??個,??$2g$??的砝碼有??$7$??個,??$5g$??的砝碼有??$2$??個.