?$解:將△DEF豎直向上平移,使點(diǎn)D與點(diǎn)B重合,點(diǎn)E與點(diǎn)A重合,得到△BAG,$?
?$△BCD水平向左平移,使得點(diǎn)D與點(diǎn)F重合,點(diǎn)C與點(diǎn)A重合,得到△GAF,$?
?$如下圖,$?
?$則△DEF≌△BAG,△BCD≌△GAF,GB∥FD,GF∥BD, $?
?$∴S_{△EDF}=S_{△BAG},S_{△BCD}=S_{△GAF}. $?
?$∵FD⊥BD, $?
?$∴S六邊形ABCDEF=S_{△DEF}+S_{△BCD}+S_{四邊形BDFA} $?
?$=S_{△BAG}+S_{△GAF}+S_{四邊形BDFA} $?
?$=FD?BD $?
?$=24×18 $?
?$=432.$?
?$即六邊形ABCDEF的面積是432$