解:解不等式?$1+\frac {3x}{m}>\frac {x}{m}+\frac 9{m}$?
?$ ①$?當?$m > 0$?時,去分母得:?$m + 3x > x + 9$?
移項得:?$3x - x > 9 - m$?
合并同類項得:?$2x > 9 - m$?
?$ $?系數(shù)化為?$1$?得:?$x >\frac 12(9 - m)$?
?$ $?解不等式?$x + 1 >\frac {x - 2 + m}3$?
去分母得:?$3x + 3 > x - 2 + m$?
移項得:?$3x - x > m - 2 - 3$?
合并同類項得:?$2x > m - 5$?
?$ $?系數(shù)化為?$1$?得:?$x >\frac {m - 5}2$?
?$ $?當?$\frac 12(9 - m)=\frac {m - 5}2$?時,解得?$m = 7$?
∴存在整數(shù)?$m = 7$?使關于?$x$?的兩個不等式解集相同
?$ ②$?當?$m < 0$?時,去分母得:?$m + 3x < x + 9$?
移項得:?$3x - x < 9 - m$?
合并同類項得:?$2x < 9 - m$?
?$ $?系數(shù)化為?$1$?得:?$x <\frac 12(9 - m)$?
∵當?$m < 0$?時,?$\frac {m - 5}2<0,$??$\frac 12(9 - m)>0,$?而?$x >\frac {m - 5}2$?與?$x <\frac 12(9 - m)$?的不等號方向是相反
∴當?$m < 0$?時解集不相同
綜上,當整數(shù)?$m = 7$?時,不等式?$1+\frac {3x}{m}>\frac {x}{m}+\frac 9{m}$?與?$x + 1 >\frac {x - 2 + m}3$?的解集相同,解集是?$x > 1$?