解:?$(1)$?設(shè)兩個(gè)兩位數(shù)的十位數(shù)字都為?$a,$?其中一個(gè)數(shù)的個(gè)位數(shù)字為?$b,$?
另一個(gè)數(shù)的個(gè)位數(shù)字為?$(10 - b)$?
則?$(10a + b)[10a+(10 - b)] = 100a(a + 1)+b(10 - b)$?
?$ (2)$?證明:
?$ $?左邊?$=(10a + b)[10a+(10 - b)]=(10a + b)(10a + 10 - b)$?
?$ =100a^2+100a - 10ab + 10ab + 10b - b^2=100a^2+100a + 10b - b^2$?
?$ $?右邊?$=100a(a + 1)+b(10 - b)=100a^2+100a + 10b - b^2$?
∵左邊?$=$?右邊,∴等式成立