$解:?(2)∠BAC=2∠BEC?$
$證明:∵?BI ?平分?∠ABC,??CI ?平分?∠ACB,??CE?平分?∠ACG ?$
$∴?∠IBC= \frac 12∠ABC,??∠ACI = \frac 12∠ACB,??∠ACE= \frac 12∠ACG?$
$?∠ACI+∠ACE= \frac 12∠ACB+ \frac 12∠ACG= \frac 12×180°=90°?$
$∴?∠BEC=90°-∠CIE=90°-(∠IBC+∠ICB)?$
$而?∠BAC= 180°-(∠ABC+∠ACB)=180°-2(∠IBC+∠ICB)?$
$∴?∠BAC=2∠BEC?$
$(4)由題意:∠EBD=\frac {1}{2}∠ABC+\frac {1}{2}∠MBG=90度$
$①∠DBE=4∠E時,∠E=22.5°,此時∠BAC=2∠E=45°$
$②∠DBE=4∠D時,∠E=67.5°,此時∠BAC=2∠E=135°$
$③∠D=4∠E時,∠E=18°,此時∠BAC=2∠E=36°$
$④∠E=4∠D時,∠E=72°,此時∠BAC=2∠E=144°$