$解:?(2)①?四邊形?ABCD?是平行四邊形,理由如下:$
由反比例函數(shù)的對稱性可知,經(jīng)過原點的正比例函數(shù)圖像與
反比例函數(shù)圖像的交點關于原點對稱
$∴?OA=OB,?? OC=OD?$
$∴四邊形?ABCD?是平行四邊形$
$?②mn= 6?$
$?③S=\frac {36}{n}-4n,?理由:$
$如圖,過點?C、??A?作?a?軸,?y?軸的平行線交于點?G?$
$當?m= 3?時,點?A?的坐標為?(3,??2)?$
$由題意得,?C?的坐標為?(n,??\frac {6}{n}),? 點?G(3,??\frac {6}{n})?$
$由①得?S_{四邊形ABCD}=4S_{△AOC}?$
$?=4(S_{矩形OEGF}-S_{△AOE}-S_{△COF}-S_{△ACG})?$
$?=4×[3×\frac {6}{n}-3-3-\frac {1}{2}×(3-n)×(\frac {6}{n}-2)]?$
$?=\frac {36}{n}-4n?$