$證明:?(1)?在四邊形?ABCD?中$
$∵?E、??F、??G、??H?分別是?AD、??BC、??BD、??AC?的中點(diǎn),$
$∴?FG= \frac {1}{2}CD,??HE =\frac {1}{2}CD,??FH=\frac {1}{2}AB,??GE=\frac {1}{2}AB?$
$∵?AB = CD?$
$∴?FG=FH= HE= EG.?$
$∴四邊形?EGFH?是菱形$
$?(2)?解:在四邊形?ABCD?中,?G,??F,??H?分別是?BD、??BC、??AC?的中點(diǎn)$
$∴?GF //DC,??HF//AB?$
$∴?∠GFB=∠DCB,??∠HFC=∠ABC?$
$∴?∠HFC+∠GFB =∠ABC+∠DCB =90°?$
$∴?∠GFH=90°?$
$∴菱形?EGFH?是正方形$
$∵?AB=1?$
$∴?EG=\frac {1}{2}AB=\frac {1}{2}?$
$∴正方形?EGFH?的面積?=(\frac {1}{2})2=\frac {1}{4}?$