$解:?(2)?存在,過?B'?作?MN//AB,?交?AD,??BC?于點?M,??N,?$
$過?E?作?EH//AD,?交?MN?于?H,?$
$∵?AD//BC,??MN//AB,?$
$∴四邊形?ABNM?是平行四邊形,$
$又∵?∠A=90°,?$
$∴四邊形?ABNM?是矩形,$
$同理可得:四邊形?AEHM?是矩形.$
$①如圖?1,?若點?B'?在?AD?下方,則?B'M=3\ \mathrm {cm},??B'N=3\ \mathrm {cm},?$
$∵?MH=AE=1(\mathrm {cm}),?$
$∴?B'H=2(\mathrm {cm}),?$
$由折疊可得,?EB'=EB=5(\mathrm {cm}),?$
$∴?Rt△EB'H?中,?EH=\sqrt {52-22}=\sqrt {21}(\mathrm {cm}),?$
$∴?BN=AM=EH=\sqrt {21}(\mathrm {cm}),?$
$∵?BP=t,?$
$∴?PB'=t,??PN=\sqrt {21}-t,?$
$∵?Rt△PB'N?中,?B'P2=PN2+B'N2,?$
$∴?t2=(\sqrt {21}-t)2+32,?$
$解得?t=\frac {5\sqrt {21}}{7}.?$
$②如圖?2,?若點?B'?在?AD?上方,則?B'M=3\ \mathrm {cm},??B'N=9\ \mathrm {cm},?$
$同理可得,?EH=3\ \mathrm {cm},?$
$∵?BP=t,?∴?B'P=t,??PN=t﹣3,?$
$∵?Rt△PB'N?中,?B'P2=PN2+B'N2,?$
$∴?t2=(t-3)2+92,?$
$解得?t=15.?$
$綜上所述,?t?的值為?\frac {5\sqrt {21}}{7}?秒或?15?秒.$