$解:??? (1)???若???a???有意義,則???8-x≥0,??????x≤8???$
$ 若???b???有意義,則???3x+4≥0,??????x≥-\frac {4}{3}???$
$ 若???c???有意義,則???x+2≥0,??????x≥-2???$
$ 當(dāng)???-\frac {4}{3}≤x≤8???時(shí),???a、??????b、??????c???都有意義$
$??? (2)???若???a、??????b、??????c???為直角三角形的三邊,則???-\frac {4}{3}\lt x\lt 8???$
$??? ①a2+b2= c2???時(shí),???(8-x)+ (3x+4)=x+2???$
$??? x=-10,???不滿足???-\frac {4}{3}\lt x\lt 8???$
故此時(shí)不成立
$??? ②a2+c2= b2???時(shí),???(8-x)+(x+2)= 3x+4???$
$??? x=2,???滿足???-\frac {4}{3}\lt x\lt 8???$
$??? ③c2+b2=a2???時(shí),???(3x+4)+(x+2)=8-x???$
$??? x=\frac {2}{5},???滿足???-\frac {4}{3}\lt x\lt 8???$
$ 綜上所述:當(dāng)???x= 2???或???\frac {2}{5}???時(shí),???a、??????b、??????c???為直角三角形的三邊。$