亚洲激情+欧美激情,无码任你躁久久久久久,我的极品美女老婆,性欧美牲交在线视频,亚洲av高清在线一区二区三区

電子課本網(wǎng) 第116頁

第116頁

信息發(fā)布者:
$ 5\sqrt{\frac{1}{6}}$
$ 6\sqrt{\frac{1}{7}}$
$解:???(2)???原式???=\sqrt {\frac {13×15+1}{15}}=\sqrt {\frac {142}{15}}=14\sqrt {\frac {1}{15}}???$
$??? (3)\sqrt {n+\frac {1}{n+2}}=(n+1)\sqrt {\frac {1}{n+2}}(n≥1)??$
?
2
2
$解:原式???={[(\sqrt {6}-\sqrt {5})×(\sqrt {6}+\sqrt {5})]}^{2021}???$
$??? ×(\sqrt {6}+\sqrt {5})???$
$??? =1×(\sqrt {6}+\sqrt {5})???$
$??? =\sqrt {6}+\sqrt {5}$
$解:原式???=(1+\sqrt {3}-\sqrt {2})2???-(1+\sqrt {3}+\sqrt {2})2???$
$??? =-2\sqrt {2}×(2+2\sqrt {3})???$
$??? =-4\sqrt {2}-4\sqrt {6}$
$解:??? (1)???若???a???有意義,則???8-x≥0,??????x≤8???$
$ 若???b???有意義,則???3x+4≥0,??????x≥-\frac {4}{3}???$
$ 若???c???有意義,則???x+2≥0,??????x≥-2???$
$ 當(dāng)???-\frac {4}{3}≤x≤8???時(shí),???a、??????b、??????c???都有意義$
$??? (2)???若???a、??????b、??????c???為直角三角形的三邊,則???-\frac {4}{3}\lt x\lt 8???$
$??? ①a2+b2= c2???時(shí),???(8-x)+ (3x+4)=x+2???$
$??? x=-10,???不滿足???-\frac {4}{3}\lt x\lt 8???$
故此時(shí)不成立
$??? ②a2+c2= b2???時(shí),???(8-x)+(x+2)= 3x+4???$
$??? x=2,???滿足???-\frac {4}{3}\lt x\lt 8???$
$??? ③c2+b2=a2???時(shí),???(3x+4)+(x+2)=8-x???$
$??? x=\frac {2}{5},???滿足???-\frac {4}{3}\lt x\lt 8???$
$ 綜上所述:當(dāng)???x= 2???或???\frac {2}{5}???時(shí),???a、??????b、??????c???為直角三角形的三邊。$

21
4
$??2+\sqrt 3??$
$??\text {解: (3) 原式 }=\sqrt{(\sqrt{2})^{2}-2 \sqrt{2}+1}+ ????\sqrt {(\sqrt {3})^2-2 ×\sqrt {3} ×\sqrt {2}+(\sqrt {2})^2}+ ??$
$??\sqrt {2^2-2 ×2 ×\sqrt {3}+(\sqrt {3})^2} +···+????\sqrt {(\sqrt {n+1})^2+2 \sqrt {n+1} · \sqrt {n}+(\sqrt {n})^2} ??$
$??=\sqrt {(\sqrt {2}-1)^2}+\sqrt {(\sqrt {3}-\sqrt {2})^2}+\sqrt {(2-\sqrt {3})^2} ??+···+\sqrt {(\sqrt {n+1}-\sqrt {n})^2} ??$
$??=\sqrt {2}-1+\sqrt {3}-\sqrt {2}+2-\sqrt {3}+···+\sqrt {n+1}-\sqrt {n} ??$
$??=\sqrt {n+1}-1 .??$