$解:過點?A?作?AE⊥CD,?垂足為點?E,?過點?B?作?BF⊥DC,?$
$交?DC?的延長線于點?F,?過點?A?作?AG⊥BF,?交?FB?于點?G$
$?則?AE=FG,??∠BFC=∠AGB=90°?$
$∵?∠BCD=120°?$
$∴?∠BCF=180°-∠BCD=60°?$
$∴?∠FBC=90°-∠BCF=30°?$
$在?Rt△BCF?中,?BC=4\ \mathrm {cm}?$
$∴?BF=BC ·sin {60}°=4×\frac {\sqrt 3}2=2\sqrt 3(\mathrm {cm})?$
$∵?∠ABC=85°?$
$∴?∠ABG=180°-∠ABC-∠FBC=65°?$
$在?Rt△ABG?中,?AB=6\ \mathrm {cm}?$
$∴?BG=AB ·cos {65}°≈6×0.423=2.538(\mathrm {cm})?$
$∴?GF=BG+BF=2.538+2\sqrt 3≈6.002\ \mathrm {cm}?$
$故點?A?到? CD?的距離約為?6.002\ \mathrm {cm}$