$解:①以?OA?為公共邊$
$?B_1(0,??-3)、??B_2(4,??-3)、??B_3(4,??3)?$
$②以?OB?為公共邊$
$?A_1(-4,??0)、??A_2(-4,??3)、??A_3(4,??3)?$
$③以?AB?為公共邊$
$設(shè)未知頂點(diǎn)坐標(biāo)為?C(m,??n)?$
$∵?∠BCA=90°?$
$∴點(diǎn)?C?到線段?ABDE?中點(diǎn)?(2,??\frac 32)?的距離為?\frac 12AB=\frac 52?$
$∴?(m-2)^2+(n-\frac 32)^2=(\frac 52)^2?$
$化簡(jiǎn)得?\mathrm {m^2}+n^2=4m+3n①?$
$當(dāng)?BC=4,??AC=3?時(shí)$
$?\begin{cases}{(m-0)^2+(n-3)^2=4^2}\\{(m-4)^2+(n-0)^2=3^2}\end{cases}?$
$化簡(jiǎn)之后得?4m-3n=7,?∴?n=\frac {4m-7}3?$
$將?n=\frac {4m-7}3?代入①解方程得?m_1=4,??m_2=\frac {28}{25}?$
$∴?C(4,??3)?或?C(\frac {28}{25},??-\frac {21}{25})?$
$當(dāng)?BC=3,??AC=4?時(shí)$
$?\begin{cases}{(m-0)^2+(n-3)^2=3^2}\\{(m-4)^2+(n-0)^2=4^2}\end{cases}?$
$化簡(jiǎn)之后得?6n=8m,??n=\frac 43m?$
$將?n=\frac 43m?代入①解方程得?m_3=0,??m_4=\frac {72}{25}?$
$當(dāng)?m_3=0?時(shí),點(diǎn)?C?與點(diǎn)?O?重合,故舍去$
$∴?C(\frac {72}{25},??\frac {96}{25})?$
$綜上所述,這個(gè)直角三角形的未知頂點(diǎn)坐標(biāo)為?(0,??-3)、??(4,??-3)、??(4,??3)、?$
$?(-4,??0)、??(-4,??3)、??(\frac {28}{25},??-\frac {21}{25})、??(\frac {72}{25},??\frac {96}{25})?$