亚洲激情+欧美激情,无码任你躁久久久久久,我的极品美女老婆,性欧美牲交在线视频,亚洲av高清在线一区二区三区

電子課本網(wǎng) 第62頁(yè)

第62頁(yè)

信息發(fā)布者:
$解:?(1)?在?Rt△ABC?中,∵?AC=2,??BC=3,??∠C=90°?$
$∴?AB=\sqrt {AC^2+BC^2}=\sqrt {13}?$
$∴?sinA=\frac {BC}{AB}=\frac 3{\sqrt {13}}=\frac {3\sqrt {13}}3,??cosA=\frac {AC}{AB}=\frac 2{\sqrt {13}}=\frac {2\sqrt {13}}{13}?$
$?(2)?不妨設(shè)?BC=1,?則?AB=\sqrt 3?$
$在?Rt△ABC?中,∵?BC=1,??AB=\sqrt 3,??∠C=90°?$
$∴?AC=\sqrt {AB^2-BC^2}=\sqrt 2?$
$∴?sinA=\frac {BC}{AB}=\frac 1{\sqrt 3}=\frac {\sqrt 3}3,??cos A=\frac {AC}{AB}=\frac {\sqrt 2}{\sqrt 3}=\frac {\sqrt 6}3?$
$?(3)tan B=\frac {AC}{BC}=\frac 35?$
$不妨設(shè)?AC=3x,?則?BC=5x?$
$在?Rt△ABC?中,∵?AC=3x,??BC=5x?$
$∴?AB=\sqrt {AC^2+BC^2}=\sqrt {34}x?$
$∴?sinA=\frac {BC}{AB}=\frac {5x}{\sqrt {34}x}=\frac {5\sqrt {34}}{34},??cosA=\frac {AC}{AB}=\frac {3x}{\sqrt {34}x}=\frac {3\sqrt {34}}{34}?$
(更多請(qǐng)點(diǎn)擊查看作業(yè)精靈詳解)
$解:過(guò)點(diǎn)?O?作?OD⊥AC,?垂足為點(diǎn)?D?$

$設(shè)直線?AC?的函數(shù)表達(dá)式為?y=kx+b?$
$將點(diǎn)?A(2,??0)、??B(0,??2)?代入得?\begin{cases}{2k+b=0}\\{b=2}\end{cases},?解得?\begin{cases}{k=-1}\\{b=2}\end{cases}?$
$∴直線?AC?的表達(dá)式為?y=-x+2?$
$將點(diǎn)?C(-1,??m)?代入得?m=3?$
$∴點(diǎn)?C?的坐標(biāo)為?(-1,??3)?$
$∴?OC=\sqrt {(-1)^2+3^2}=\sqrt {10}?$
$∵?OA=OB=2?$
$∴?∠OAB=45°?$
$∵?OD⊥AC?$
$∴?△OAD?為等腰直角三角形$
$∴?OD=\frac {OA}{\sqrt 2}=\sqrt 2?$
$在?Rt△OCD?中,∵?OD=\sqrt 2,??OC=\sqrt {10}?$
$∴?sin ∠ACO=\frac {OD}{OC}=\frac {\sqrt 2}{\sqrt {10}}=\frac {\sqrt 5}5?$
$解:連接?OA、??OC,?過(guò)點(diǎn)?O?作?OD⊥BC,?垂足為點(diǎn)?D?$

$∵?PA?與?\odot O?相切$
$∴?OA⊥PA?$
$∵?OD⊥BC,??PA⊥PB?$
$∴四邊形?OAPD?是矩形$
$∴?OA=DP,??OD=AP?$
$∵?BC=8,??OD⊥BC?$
$∴?CD=\frac 12BC=4?$
$∵?CP=1?$
$∴?OA=DP=5?$
$在?Rt△OCD?中,∵?OC=OA=5,??CD=4?$
$∴?OD=\sqrt {OC^2-CD^2}=3?$
$∴?AP=OD=3?$
$在?Rt△APB?中,$
$∵?AP=3,??BP=BC+CP=9?$
$∴?AB=\sqrt {AP^2+BP^2}=3\sqrt {10}?$
$∴?sin ∠ABC=\frac {AP}{AB}=\frac 3{3\sqrt {10}}=\frac {\sqrt {10}}{10}?$