$解:?(1)?在?Rt△ABC?中,∵?AC=2,??BC=3,??∠C=90°?$
$∴?AB=\sqrt {AC^2+BC^2}=\sqrt {13}?$
$∴?sinA=\frac {BC}{AB}=\frac 3{\sqrt {13}}=\frac {3\sqrt {13}}3,??cosA=\frac {AC}{AB}=\frac 2{\sqrt {13}}=\frac {2\sqrt {13}}{13}?$
$?(2)?不妨設(shè)?BC=1,?則?AB=\sqrt 3?$
$在?Rt△ABC?中,∵?BC=1,??AB=\sqrt 3,??∠C=90°?$
$∴?AC=\sqrt {AB^2-BC^2}=\sqrt 2?$
$∴?sinA=\frac {BC}{AB}=\frac 1{\sqrt 3}=\frac {\sqrt 3}3,??cos A=\frac {AC}{AB}=\frac {\sqrt 2}{\sqrt 3}=\frac {\sqrt 6}3?$
$?(3)tan B=\frac {AC}{BC}=\frac 35?$
$不妨設(shè)?AC=3x,?則?BC=5x?$
$在?Rt△ABC?中,∵?AC=3x,??BC=5x?$
$∴?AB=\sqrt {AC^2+BC^2}=\sqrt {34}x?$
$∴?sinA=\frac {BC}{AB}=\frac {5x}{\sqrt {34}x}=\frac {5\sqrt {34}}{34},??cosA=\frac {AC}{AB}=\frac {3x}{\sqrt {34}x}=\frac {3\sqrt {34}}{34}?$