$解:?(1)?∵?△PQC?的面積與四邊形?PABQ?的面積相等$
$∴?S_{△ABC}=2S_{△PQC}?$
$∵?PQ//AB?$
$∴?△ABC∽△PQC?$
$∴?\frac {CP}{AC}=\frac {\sqrt 2}2?$
$∵?AC=4?$
$∴?CP=2\sqrt 2?$
$?(2)?∵?△ABC∽△PQC?$
$∴?\frac {CP}{CQ}=\frac {AC}{BC}=\frac 43?$
$設(shè)?CP=4x,?則?CQ=3x,??PA=4-4x,??QB=3-3x?$
$∵?△PQC?的周長與四邊形?PABQ?的周長相等$
$∴?CP+CQ=PA+QB+AB?$
$∴?4x+3x=(4-4x)+(3-3x)+5?$
$解得?x=\frac 67?$
$∴?CP=4x=\frac {24}{7}$(更多請點擊查看作業(yè)精靈詳解)