亚洲激情+欧美激情,无码任你躁久久久久久,我的极品美女老婆,性欧美牲交在线视频,亚洲av高清在线一区二区三区

電子課本網(wǎng) 第53頁

第53頁

信息發(fā)布者:
7
(更多請點擊查看作業(yè)精靈詳解)
$解:(3)?∵?△AEF∽△BCA? $
$∴?\frac {AF}{AB}=\frac {EF}{AC}?$
$∵?AF=4,??CF=2?$
$∴?AC=6?$
$∵?AB=\frac 12EF?$
$∴?\frac 4{\frac 12EF}=\frac {EF}6?$
$∴?EF=4\sqrt 3?$
$在?Rt△AEF ?中,∵?EF=4\sqrt 3,??AF=4?$
$∴?AE=\sqrt {EF^2-AF^2}=4\sqrt 2?$(更多請點擊查看作業(yè)精靈詳解)
$解:?(1)?∵?△PQC?的面積與四邊形?PABQ?的面積相等$
$∴?S_{△ABC}=2S_{△PQC}?$
$∵?PQ//AB?$
$∴?△ABC∽△PQC?$
$∴?\frac {CP}{AC}=\frac {\sqrt 2}2?$
$∵?AC=4?$
$∴?CP=2\sqrt 2?$
$?(2)?∵?△ABC∽△PQC?$
$∴?\frac {CP}{CQ}=\frac {AC}{BC}=\frac 43?$
$設(shè)?CP=4x,?則?CQ=3x,??PA=4-4x,??QB=3-3x?$
$∵?△PQC?的周長與四邊形?PABQ?的周長相等$
$∴?CP+CQ=PA+QB+AB?$
$∴?4x+3x=(4-4x)+(3-3x)+5?$
$解得?x=\frac 67?$
$∴?CP=4x=\frac {24}{7}$(更多請點擊查看作業(yè)精靈詳解)
$解:∵?AF//BC?$
$∴?∠F=∠E?$
$∵點?D?是?AB?的中點$
$∴?AD=BD?$
$在?△ADF ?和?△BDE?中$
$? \begin{cases}{∠F=∠E}\\{∠ADF=∠BDE}\\{AD=BD}\end{cases}?$
$∴?△ADF≌△BDE(\mathrm {AAS})?$
$∴?AF=BE?$
$設(shè)?AF=BE=x,?則?CE=BC+BE=8+x?$
$∵?∠F=∠E,??∠AGF=∠CGE?$
$∴?△AGF∽△CGE?$
$∴?\frac {AF}{CE}=\frac {GA}{CG}=\frac 13?$
$∴?\frac x{8+x}=\frac 13?$
$解得?x=4?$
$∴?AF=4?$
$解:?(1)?相切,理由如下$
$連接?BC?$
$∵?∠EAB=∠ADB?$
$∴?∠EAC=∠EAB+∠BAC=∠ADB+∠BAC=∠ACB+∠BAC?$
$∵?AC?是?\odot O?的直徑$
$∴?∠ABC=90°?$
$∴?∠EAC=∠ACB+∠BAC=90°?$
$∴?AE?與?\odot O?相切$
$解:?(2)?相似,理由如下:$
$∵?△AEF?是直角三角形,點?B?是?EF?的中點$
$∴?BA=BF?$
$∴?∠BAC=∠AFE?$
$∵?∠EAF=∠ABC=90°?$
$∴?△AEF∽△BCA?$
$?解:(3)?分兩種情況$
$①過點?P?作?PM⊥AB,?垂足為點?M,?$
$要使?△PQM?為等腰直角三角形,$
$則?PM=PQ?$

$∵?△PQC∽△ABC,??PM=PQ?$
$∴?\frac {PQ}5=\frac {\frac {12}{5}-PM}{\frac {12}{5}}=\frac {\frac {12}{5}-PQ}{\frac {12}{5}}?$
$∴?PQ=\frac {60}{37}?$
$②當?∠PMQ=90°?時,$
$要使?△PQM?為等腰直角三角形,$
$則有?\frac {PQ}5=\frac {\frac {12}{5}-\frac 12PQ}{\frac {12}{5}}?$
$解得?PQ=\frac {120}{49}?$
$綜上所述,?PQ?的長為?\frac {60}{37}?或?\frac {120}{49}?$