$解:?(2)AC+AD?為定值,理由如下:$
$由題意得?AB//OP//O'P'?$
$∵?AB//OP?$
$∴?△ABC∽△OPC?$
$∴?\frac {AB}{OP}=\frac {AC}{OC}?$
$∵?AB=h,??OP=O'P'=l,??OA=a?$
$∴?\frac h{l}=\frac {AC}{a+AC}?$
$∴?AC=\frac {ah}{l-h}?$
$同理可得?AD=\frac {(m-a)h}{l-h}?$
$∴?AC+AD=\frac {mh}{l-h}?$
$∴?AC+AD?為定值$
$?(3)?設(shè)點(diǎn)?A?到點(diǎn)?O?的距離為?S_{1},?點(diǎn)?A?到影子頂端?C?的距離為?S_{2}?$
$∵?AB//OP?$
$∴?△ABC∽△OPC?$
$∴?\frac {AB}{OP}=\frac {AC}{OC}?$
$∵?AB=h,??OP=l,??AC=S_{2},??OC=OA+AC=S_{1}+S_{2}?$
$∴?\frac h{l}=\frac {S_{2}}{S_{1}+S_{2}}?$
$∴?\frac l{h}-1=\frac {S_{1}}{S_{2}}?$
$∴?\frac {S_{1}}{S_{2}}=\frac {v_{1}}{v_{2}}=\frac {l-h}h?$
$∴?v_{2}=\frac {hv_{1}}{l-h}?$