亚洲激情+欧美激情,无码任你躁久久久久久,我的极品美女老婆,性欧美牲交在线视频,亚洲av高清在线一区二区三区

電子課本網(wǎng) 第51頁(yè)

第51頁(yè)

信息發(fā)布者:
(更多請(qǐng)點(diǎn)擊查看作業(yè)精靈詳解)
$?\frac {ah}{l-h}?$
$解:?(2)AC+AD?為定值,理由如下:$
$由題意得?AB//OP//O'P'?$
$∵?AB//OP?$
$∴?△ABC∽△OPC?$
$∴?\frac {AB}{OP}=\frac {AC}{OC}?$
$∵?AB=h,??OP=O'P'=l,??OA=a?$
$∴?\frac h{l}=\frac {AC}{a+AC}?$
$∴?AC=\frac {ah}{l-h}?$
$同理可得?AD=\frac {(m-a)h}{l-h}?$
$∴?AC+AD=\frac {mh}{l-h}?$
$∴?AC+AD?為定值$
$?(3)?設(shè)點(diǎn)?A?到點(diǎn)?O?的距離為?S_{1},?點(diǎn)?A?到影子頂端?C?的距離為?S_{2}?$
$∵?AB//OP?$
$∴?△ABC∽△OPC?$
$∴?\frac {AB}{OP}=\frac {AC}{OC}?$
$∵?AB=h,??OP=l,??AC=S_{2},??OC=OA+AC=S_{1}+S_{2}?$
$∴?\frac h{l}=\frac {S_{2}}{S_{1}+S_{2}}?$
$∴?\frac l{h}-1=\frac {S_{1}}{S_{2}}?$
$∴?\frac {S_{1}}{S_{2}}=\frac {v_{1}}{v_{2}}=\frac {l-h}h?$
$∴?v_{2}=\frac {hv_{1}}{l-h}?$
$解:(1)如圖,$

$∵AB∥OM,$
$∴△A′AB∽△A′OM,$
$∴\frac{A′B}{A′M}=\frac{AB}{OM},$
$即\frac{A′B}{A′B+BM}=\frac{30}{OM}①,$
$∵DC∥OM,$
$∴△D′DC∽△D′OM,$
$∴\frac{D′C}{D′M}=\frac{CD}{OM},$
$即\frac{D′C}{D′C+CM}=\frac{30}{OM}②,$
$由①②得\frac{A′B}{A′B+BM}=\frac{D′C}{D′C+CM},$
$∴\frac{A′B}{A′B+BM}=\frac{D′C}{D′C+CM}=\frac{A′B+D′C}{A′B+BM+CM+D′C}=\frac{6}{30+6}=\frac{1}{6},$
$∴\frac{30}{OM}=\frac{1}{6},$
$∴OM=180(\ \mathrm {cm})$
$解:?(2)?設(shè)橫向影子?A'B,??D'C?的長(zhǎng)度和為?y\ \mathrm {cm},?$
$同理可得?\frac {60}{60+y}=\frac {150}{180},?$
$解得?y=12\ \mathrm {cm}.?$
$解:(3)?記燈泡為點(diǎn)?P,?如圖:$
$∵?AD//A'D',?$
$∴?∠PAD=∠PA'D',??∠PDA=∠PD'A'.?$
$∴?△PAD∽△PA'D'.?$
$根據(jù)相似三角形對(duì)應(yīng)高的比等于相似比,$
$可得?\frac {AD}{A'D'}=\frac {PN}{PM},?$
$設(shè)燈泡離地面距離為?x,?$
$由題意得?PM=x,??PN=x-a,??AD=na,??A'D'=na+b,?$
$∴?\frac {na}{na+b}=\frac {x-a}x=1-\frac ax?$
$?\frac ax=1-\frac {na}{na+b}?$
$?x=\frac {na^2+ab}b.?$