$解:?B?為線段?AF?的黃金分割點(diǎn),?C?為線段?DG?的黃金分割點(diǎn),$
$矩形?AFGD?和矩形?CBFG?都是黃金矩形,證明如下:$
$設(shè)正方形?ABCD?的邊長(zhǎng)為?a,?則?AB=BC=a?$
$∵點(diǎn)?E?是?AB?的中點(diǎn)$
$∴?BE=\frac 12AB=\frac {a}2?$
$在?Rt△BCE?中,∵?BE=\frac {a}2,??BC=a?$
$∴?CE=\sqrt {BE^2+BC^2}=\frac {\sqrt 5}2a?$
$∴?EF=\frac {\sqrt 5}2a,??AF=\frac {\sqrt 5+1}2a,??BF=\frac {\sqrt 5-1}2a?$
$∴?\frac {AB}{AF}=\frac a{\frac {\sqrt 5+1}2a}=\frac {\sqrt 5-1}2≈0.618?$
$∴點(diǎn)?B?是線段?AF?的黃金分割點(diǎn)$
$∵?\frac {DC}{DG}=\frac {AB}{AF}≈0.618?$
$∴點(diǎn)?C?是線段?DG?的黃金分割點(diǎn)$
$∵?\frac {AD}{AF}=\frac {AB}{AF}≈0.618,??\frac {BF}{BC}=\frac {\frac {\sqrt 5-1}2a}{a}=\frac {\sqrt 5-1}2≈0.618?$
$∴矩形?AFGD?和矩形?CBFG?都是黃金矩形$