$解:?(1)?如答圖?1,?過點?C?作?OB?的垂線,$
$分別交仰角、俯角線于點?E,??D,?交水平線于點?F.?$
$在?Rt△AEF ?中,?tan∠EAF=\frac {EF}{AF}?$
$所以?EF=AF×tan 15°≈130×0.27= 35.1(\ \mathrm {cm}). ?$
$因為?AF=AF,??∠EAF=∠DAF,??∠AFE=∠AFD= 90°,?$
$所以?△ADF≌△AEF(\mathrm {ASA}),?$
$所以?EF= DF=35.1\ \mathrm {cm},?$
$所以?CE=160+35.1=195.1(\ \mathrm {cm}),?$
$?ED=35.1×2=70.2(\ \mathrm {cm})\gt 26\ \mathrm {cm},?$
$所以小杜下蹲的最小距離為?208-195. 1=12. 9(\ \mathrm {cm}).?$
$?(2)?如答圖?2,?過點?B?作?OB?的垂線分別交仰角、俯角線于點?M,??N.?$
$交水平線于點?P.?$
$在?Rt△APM?中,?tan∠MAP =\frac {MP}{AP}?$
$所以?MP=AP×tan 20°≈150×0.36= 54. 0(\ \mathrm {cm}).?$
$因為?AP= AP,??∠MAP=∠NAP,??∠APM=∠APN=90°,?$
$所以?△AMP≌△ANP(\mathrm {ASA}),?$
$所以?PN= MP= 54.0\ \mathrm {cm},?$
$所以?BN= 160- 54.0= 106.0(\ \mathrm {cm}).?$
$小若墊起腳尖后頭頂?shù)母叨葹?120+3= 123(\ \mathrm {cm}),?$
$所以小若頭頂超出點?N?的高度?= 123- 106. 0= 17.0(\ \mathrm {cm})\gt 15(\ \mathrm {cm}),?$
所以小若墊起腳尖后能被識別.