$解:?(1)?∵?CD?是?Rt△ABC?的斜邊中線$
$∴?CD= BD?$
$∴?∠DCB=∠B?$
$∵?∠HAC+∠ACH=90°,??∠ACH+∠DCB=90°?$
$∴?∠HAC=∠DCB=∠B?$
$∵?AH= 2CH?$
$∴?AC=\sqrt{AH2+ HC2}=\sqrt{5}CH?$
$∴?sin B= sin∠HAC =\frac {HC}{AC}=\frac {\sqrt{5}}{5}?$
$?(2)?∵?CD=\sqrt{5}?$
$∴?AB= 2CD= 2\sqrt{5}.?$
$∵?sin B =\frac {\sqrt{5}}{5}?$
$∴?AC=2?$
$∴?BC=2AC=4?$
$∵?∠HAC=∠B,??∠AHC=∠ACB?$
$∴?△ACE∽△BCA?$
$?\frac {CE}{AC}=\frac {AC}{BC}?$
$∴?CE=1?$
$∴?BE=BC-CE=3?$