$解:?(1)?由二次函數(shù)?y=-x2+bx+c ?的圖像經(jīng)過點?A(-1,??0),??C(2,??3)?$
$?\begin{cases}{-1-b+c=0 } \\{-4+2b+c=3} \end{cases}? 解得?\begin{cases}{b=2}\\{c=3}\end{cases}?$
$∴函數(shù)表達(dá)式為?y= -x2+ 2x +3?$
$由直線?AC?經(jīng)過點?A(-1,??0),??C(2,??3)?$
$可得函數(shù)表達(dá)式為?y=x+ 1?$
$?(2)?由?y= -x2+2x+ 3,?得?N(0,??3),??D(1,??4)?$
$點?D?關(guān)于過點?(3,??0)?且與?y?軸平行的直線的對稱點?D'?的坐標(biāo)為?(5,??4)?$
$連接?ND',?則?ND'?的函數(shù)表達(dá)式為?y=\frac {1}{5}x+ 3?$
$?ND'?交一次函數(shù)?x = 3?的圖像于點?M(3,??\frac {18}{5})?$
$即?m=\frac {18}{5},?此時?MN+MD?的值最小$
$?(3)?二次函數(shù)?y= -x2+2x+3?的圖像的對稱軸為過點?(1,??0)?且與?y?軸平行的直線$
$因此?B(1,??2),??D(1,??4),??BD= 2?$
$若以?B、??D、??E、??F ?為頂點的四邊形是平行四邊形,且?EF//BD?$
$則?EF= BD?$
$設(shè)點?E、??F ?的坐標(biāo)分別為?(t,??t+1)、??(t,??-t2+2t+3)?$
$則?|(-t2+2t+3)-(t+1)|=2?$
$解得?{t}_1= 0,??{t}_2= 1(?舍去),?{t}_3=\frac {1+\sqrt{17}}{2},??{t}_4=\frac {1-\sqrt{17}}{2} ?$
$∴?{E}_1(0,??1),??{E}_2(\frac {1+\sqrt{17}}{2},??\frac {3+\sqrt{17}}{2}),??{E}_3(\frac {1-\sqrt{17}}{2},??\frac {3-\sqrt{17}}{2})?$
$?(4)?過點?P ?作?PQ//y?軸,交?AC?于點?Q?$
$設(shè)點?P ?的坐標(biāo)為?(a,??-a2+ 2a+ 3),?則點?Q ?的坐標(biāo)為?(a,??a + 1)?$
$∵點?P ?在?AC?上方$
$∴?PQ=(-a2+2a+3)- (a+1)= -a2+a+2?$
$∴?S_{△APC}= S_{△APQ}+ S_{△CPQ}?$
$?=\frac {1}{2}(-a2+a+2) · [2-(-1)]?$
$?=-\frac {3}{2}(a-\frac {1}{2})2+\frac {27}{8}?$
$∴當(dāng)?a=\frac {1}{2}?時,?S_{△APC}?的最大值為?\frac {27}{8}?$