$解:在?Rt△ABC?中,?∠C=90°,??BC=\sqrt{5}?$
$∴? tan A=\frac {BC}{AC} =\frac {1}{2}?$
$∴?AC=2BC=2\ \mathrm {AB}= 2 \sqrt{5} ?$
$由勾股定理,得?AB=\sqrt{AC^2+BC^2}=5?$
$過點(diǎn)?D?作?DE⊥AB,?垂足為?E,?如圖所示$
$∵? tan ∠ABD=\frac {DE}{BE}=\frac {1}{3}?$
$∴? BE=3DE?$
$∵? tan A=\frac {DE}{AE}=\frac {1}{2}?$
$∴? AE=2DE?$
$∵? AB=BE+AE=5DE=5?$
$∴? DE=1,??AE=2?$
$由勾股定理,得?AD=\sqrt{5} ?$
$\ ∴? CD=AC-AD=\sqrt{5}$