亚洲激情+欧美激情,无码任你躁久久久久久,我的极品美女老婆,性欧美牲交在线视频,亚洲av高清在线一区二区三区

電子課本網 第51頁

第51頁

信息發(fā)布者:
A
$?\frac {4}{25}?$
6
1:16
$解:?(1)?周長之比等于相似比$
$∴?C_{五邊形ABCDE}:??C_{五邊形A'B'C'D'E'}=3:??2?$
$∵五邊形?ABCDE = 72\ \mathrm {cm}?$
$∴?C_{五邊形A'BC'D'E'} = 48\ \mathrm {cm}?$
$?(2)?面積之比等于相似比的平方$
$∴?S _{五邊形ABCDE}:??S_{ 五邊形A'B'C'D'E'}=9:??4?$
$∵?S_{ 五邊形A'B'C'D'E' }= 120\ \mathrm {cm}2?$
$∴?S _{五邊形ABCDE} = 270\ \mathrm {cm}2?$
$解:∵點?{A}_1、??{A}_2,?點?{B}_1、??{B}_2,?$
$點?{C}_1、??{C}_2?分別是?△ABC?的邊?BC、??CA、?? AB?的三等分點$
$∴?\frac {B{C}_2}{AB}=\frac {B{A}_1}{BC}=\frac {1}{3}?$
$∵?∠B=∠B?$
$∴?△B{C}_2{A}_1∽△BAC?$
$同理可得:?△A{B}_2{C}_1∽△ACB、??△C{B}_1{A}_2∽△ CAB,?且相似比均為?1 : 3?$
$∴?{A}_1{C}_2={B}_1{B}_2=\frac {1}{3}AC?$
$?{A}_2{B}_1={C}_1{C}_2=\frac {1}{3}AB?$
$?{C}_1{B}_2={A}_1{A}_2=\frac {1}{3}BC?$
$∴?{C}_{六邊形}=\frac {2}{3}{C}_{△ABC}=\frac {2}{3}l?$
$解:由題意可知,?An,??Bn?是?AC、??BC?中最靠近點?C?的?{2}^{n}?等分點$
$則?{S}_{四邊形AnABBn}=\frac {3}{4}+\frac {3}{42}+\frac {3}{43}+···+\frac {3}{{4}^{n}}?$
$∵?An,??Bn?是?AC、??BC?中最靠近點?C?的?{2}^{n}?等分點$
$∴?△ABC∽△AnBnC,?相似比為?{2}^{n}:??1?$
$∴?S_{△ABC} :?? S_{△AnBnC}={4}^{n}:??1?$
$∴?S_{△AnBnC} =\frac {1}{{4}^{n}}S_{△ABC} ?$
$又∵?S_{四邊形AnABB}= S_{△ABC}- S_{△AnBnC}?$
$∴?S_{四邊形AnABBn}=1-\frac {1}{{4}^{n}}?$
$∴?\frac {3}{4}+\frac {3}{42}+\frac {3}{43}+···+\frac {3}{{4}^{n}}=1-\frac {1}{{4}^{n}}?$