$???解: (1)設(shè)其中一個(gè)等邊扇形的半徑為x\ \mathrm {cm} ,???$
$???則該扇形的面積是\frac {x}{2πx}×πx2=\frac {1}{2}x2???$
$???另一個(gè)等邊扇形的半徑是(40-x)\ \mathrm {cm} ,???$
$???面積是\frac {1}{2}(40- x)2???$
$???所以\frac {1}{2}x2+\frac {1}{2}(40-x)2=625???$
$???解得x_{1}= 5,x_{2}= 35???$
$???3x_{1} = 15, 3x_{2}= 105???$
$???所以應(yīng)該剪成15\ \mathrm {cm}和105\ \mathrm {cm}兩段???$
$???(2)設(shè)面積之和為y\ \mathrm {cm}2???$
$???y=\frac {1}{2}x2+\frac {1}{2}(40- x)2=x2-40x+800= (x-20)2+ 400.???$
$???當(dāng)x= 20時(shí), y有最小值400???$
$???所以當(dāng)兩個(gè)”等邊扇形”邊長(zhǎng)都為20\ \mathrm {cm}時(shí),面積之和取得最小值,???$
$???最小值是400\ \mathrm {cm}2??$
?