解:?$(1)$?由?$v=\frac {s}{t}$?可得,小雨從家到圖書館需要的時間?$t_{小用}=\frac sv=\frac {3\ \mathrm {km}}{5\ \mathrm {km/h}}=0.6\ \mathrm {h}=36 \mathrm {\mathrm {min}}$?
?$(2)$?設媽媽追上小雨的時間為?$t,$?則小雨走的路程?$s_{1}=v(\frac {10}{60}\ \mathrm {h}+t) =v(\frac 16\ \mathrm {h}+t)($?式?$①),$?小雨走的路程等于小雨媽媽走的路程,即?$s_{1}=s_{2}=v't($?式?$②),$?由式?$①②$?可得?$v(\frac 16\ \mathrm {h}+t)=v't,$?則?$5\ \mathrm {km/h}×(\frac 16\ \mathrm {h}+t)=15\ \mathrm {km/h}×t,$?解得?$t=\frac 1{12}\ \mathrm {h}=5 \mathrm {\mathrm {min}}$?
?$(3)$?小雨從家出發(fā)到掉頭返回時行走的路程?$s_{1}'=vt_{1}=5\ \mathrm {km/h}×\frac {10}{60}\ \mathrm {h}=\frac 56\ \mathrm {km}。$?設從小雨返回到與媽媽相遇用時為?$t_{2},$?則?$s_{1}'=(u+v')t_{2},$??$\frac 56\ \mathrm {km}=(5\ \mathrm {km/h}+15\ \mathrm {km/h})t_{2},$?解得?$t_{2}=\frac 1{24}\ \mathrm {h}。$?
此時距圖書館的距離?$s'=s-v't_{2}=3\ \mathrm {km}-15\ \mathrm {km/h}×\frac 1{24}\ \mathrm {h}=2.375\ \mathrm {km}$?