亚洲激情+欧美激情,无码任你躁久久久久久,我的极品美女老婆,性欧美牲交在线视频,亚洲av高清在线一区二区三区

電子課本網(wǎng) 第112頁

第112頁

信息發(fā)布者:
 
A
$解:(1)∵直線y=px+3與y軸的交點為B$
$∴B(0,3),即OB=3$
$∵點A 的橫坐標(biāo)為2$
$∴S_{△AOB}=\frac{1}{2}×3×2=3$
$∵S_{△AOB}:S_{△COD}=3:4$
$∴S_{△COD}=4$
$設(shè)C(m,\frac{k}{m}),∴ \frac{k}{m}=4,解得k=8$
$∵點A(2,q)在y=\frac{8}{x}上,∴q=4$
$把點A(2,4)代入y=px+3,得p=\frac{1}{2}$
$∴k=8,p=\frac{1}{2}$
$(2)由(1)得C(m,\frac{8}{m}),∴E(m,\frac{1}{2}m+3)$
$∵OE將四邊形 BOCE分成兩個面積相等的三角形$
$∴S_{△BOE}=S_{△COE}$
$∵S_{△BOE}=\frac {3}{2}m,S_{△COE}=\frac{m}{2}(\frac{1}{2}m+3-\frac{8}{m})$
$∴\frac{3}{2}m=\frac{m}{2}(\frac{1}{2}m+3-\frac{8}{m}),得m^{2}=16$
$解得m=4或m=-4(不符合題意,舍去)$
$∴點C的坐標(biāo)為(4,2)$
$解:(1)∵m=2,a=4$
$∴ (2,0),B(-2,0)$
$y_{1}=\frac{2}{x},y_{2}=\frac{-2}{x}$
$∴AB=4, 當(dāng)x=2時$
$y_{1}=\frac{2}{2}=1,則E(2,1);$
$當(dāng)y_{1}=4時,4=\frac{2}{x},解得x=\frac{1}{2}$
$\ 則G(\frac{1}{2},4);$
$當(dāng)y_{2}=4時,4=\frac{-2}{x}$
$解得x=-\frac{1}{2},則 H(-\frac{1}{2},4)\ $
$設(shè)一次函數(shù)y_{3}=kx+b$
$將(2,1), (\frac{1}{2},4)代入得$
$\begin{cases}{ 2k+b=1\ }\ \\ {\frac {1}{2}k+b=4\ } \end{cases}解得\begin{cases}{ k=-2 }\ \\ { b=5 } \end{cases}$
$∴y_{3}=-2x+5$
$當(dāng)x=0時,y_{3}=5,則P(0,5)$
$∴S_{△PGH}=\frac{1}{2}×[\frac{1}{2}-(-\frac{1}{2})]×(5-4)=\frac{1}{2}$
$綜上, 函數(shù)y的表達(dá)式為y=-2x+5,△PGH 的面積為\frac{1}{2}$
$(2)△PGH的面積不變,理由:$
$∵A(m,0),B(m-a,0),y_{1}=\frac{m}{x},y_{2}= \frac{m-a}{x},∴AB=a$
$當(dāng)x=m時,y_{1}=\frac{m}{m}=1,則E(m,1);$
$當(dāng)y_{1}=a時,a=\frac{m}{x},解得x=\frac{m}{a},則G(\frac{m}{a},a);$
$當(dāng)y_{2}=a時,a=\frac{m-a}{x},解得x=\frac{m-a}{a},則H(\frac{m-a}{a},a)$
$通過E,G兩點可求得y_{3}=-\frac {a}{m}x+1+a$
$當(dāng)x=0時,y_{3}=1+a,則P(0,1+a)$
$∴S_{△PCH}=\frac{1}{2}×[\frac{m}{a}-(\frac{m-a}{a})]×(1+a-a)=\frac{1}{2}$
$∴△PGH的面積不變$
$(3)(更多請點擊查看作業(yè)精靈詳解)$
$解:直線PH與BC邊的交點在函數(shù)y_{2}的$
$圖像上,理由:$
$通過P,H兩點可求得PH解析式y(tǒng)=\frac {a}{a-m}x+1+a$
$當(dāng)x=m-a時,y=\frac{a}{a-m}×(m-a)+1+a=1$
$∴直線PH與BC邊的交點坐標(biāo)為(m-a,1)$
$當(dāng)x=m-a時,y_{2}=\frac{m-a}{m-a}=1$
$∴直線PH與BC邊的交點在函數(shù)y_{2}的圖像上 $