$解:過點(diǎn)B作BC⊥OA于點(diǎn)C$
$∵在Rt△BOC中,sin∠BOA=\frac {BC}{BO}=\frac 3 5,BO=5$
$∴BC=3$
$∴在Rt△OBC中,由勾股定理,得OC=\sqrt {{BO}^2-{BC}^2}=4$
$∵點(diǎn)A的坐標(biāo)為(10,0)$
$∴OA=10$
$∴AC=OA-OC=6$
$∴在Rt△ABC中,由勾股定理,得AB=\sqrt {{BC}^2+{AC}^2}=3\sqrt {5}$
$∴cos∠BAO=\frac {AC}{AB}=\frac {2\sqrt {5}}5$