$解:設(shè)AD交EH于點R.$
$∵ AD⊥BC于點D.$
$∴ ∠ADB=90°.$
$∵ 矩形EFGH的邊FG 在BC上,$
$∴ EH//BC,∠EFC=∠FEH=90°,$
$∴ △AEH∽△ABC.$
$∴\frac {AR}{AD}=\frac {EH}{BC},四邊形EFDR是矩形,$
$∴ RD=EF.$
$∵ BC=8,AD=6,EH=2EF.$
$∴ \frac {6-\frac {1}{2}EH}{6} = \frac {EH}{8} ,$
$解得EH= \frac {24}{5} ,$
$∴ EH的長為 \frac {24}{5}$