$解:(2)如圖,過(guò)點(diǎn)A作AE⊥CD,垂足為E,$
$連接CO并延長(zhǎng),交⊙O于點(diǎn)F,連接AF.$
$∵在Rt△AED中,cos∠ADC=\frac{DE}{AD}=\frac{\sqrt{2}}{4},$
$AD=2 \sqrt{2},$
$∴DE=1.$
$∴ 由勾股定理,得AE= \sqrt{AD2-DE2}= \sqrt{7}\ $
$∵△BAC∽△BCD,$
$∴\frac{AC}{CD}=\frac{AB}{CB}=\frac{4\sqrt{2}}{4}=\sqrt{2}.$
$設(shè)CD=x,則AC=\sqrt{2}x,CE=x-1.$
$∵在Rt∠ACE中,由勾股定理,得$
$AC2=CE2+AE2,$
$∴(\sqrt{2}x)2=(x-1)2+(\sqrt{7})2,$
$即x2+2x-8=0,$
$解得x_{1}=2,x_{2}=-4(不合題意,舍去).$
$∴CD=2,AC=2\sqrt{2}$
$∵ AC=AC,$
$∴∠AFC=∠ADC.$
$∵CF為⊙O的直徑,\ $
$∴∠CAF=90°.$
$∴ sin∠AFC=\frac{AC}{CF}=sin∠ADC=\frac{AE}{AD}$
$∴\frac{2\sqrt{2}}{CF}=\frac{\sqrt{7}}{2\sqrt{2}},$
$解得CF=\frac{8\sqrt{7}}{7}.$
$∴⊙O的半徑為\frac{4\sqrt{7}}{7}\ $